
Cloud Computing
CS 15-319

Distributed File Systems and Cloud Storage – Part III
Lecture 14, Feb 29, 2012

Majd F. Sakr, Mohammad Hammoud and
Suhail Rehman

1

Today…

 Last session
 Distributed File Systems and Cloud Storage- Part II

 Today’s session
 Distributed File Systems and Cloud Storage- Part III

 Announcements:
 Project update is due today
 Spring break: March 3-7, classes resume March 10

2

Discussion on Distributed File Systems

3

Distributed File Systems (DFSs)

Basics DFS AspectsBasics

DFS Aspects
Aspect Description

Architecture How are DFSs generally organized?

Processes • Who are the cooperating processes?
• Are processes stateful or stateless?

Communication • What is the typical communication paradigm followed
by DFSs?

• How do processes in DFSs communicate?
Naming How is naming often handled in DFSs?

Synchronization What are the file sharing semantics adopted by DFSs?

Consistency and Replication What are the various features of client-side caching as well
as server-side replication?

Fault Tolerance How is fault tolerance handled in DFSs?

Aspect Description
Architecture How are DFSs generally organized?

Processes • Who are the cooperating processes?
• Are processes stateful or stateless?

Communication • What is the typical communication paradigm followed
by DFSs?

• How do processes in DFSs communicate?
Naming How is naming often handled in DFSs?

Synchronization What are the file sharing semantics adopted by DFSs?

Consistency and Replication What are the various features of client-side caching as well
as server-side replication?

Fault Tolerance How is fault tolerance handled in DFSs?

DFS Aspects
Aspect Description

Architecture How are DFSs generally organized?

Processes • Who are the cooperating processes?
• Are processes stateful or stateless?

Communication • What is the typical communication paradigm followed
by DFSs?

• How do processes in DFSs communicate?
Naming How is naming often handled in DFSs?

Synchronization What are the file sharing semantics adopted by DFSs?

Consistency and Replication What are the various features of client-side caching as well
as server-side replication?

Fault Tolerance How is fault tolerance handled in DFSs?

Aspect Description
Architecture How are DFSs generally organized?

Processes • Who are the cooperating processes?
• Are processes stateful or stateless?

Communication • What is the typical communication paradigm followed
by DFSs?

• How do processes in DFSs communicate?
Naming How is naming often handled in DFSs?

Synchronization What are the file sharing semantics adopted by DFSs?

Consistency and Replication What are the various features of client-side caching as well
as server-side replication?

Fault Tolerance How is fault tolerance handled in DFSs?

Synchronization In DFSs
 File Sharing Semantics
 Lock Management

Synchronization In DFSs
 File Sharing Semantics
 Lock Management

Unix Semantics In Single
Processor Systems

 Synchronization for file systems would not be an issue if files were
not shared

 When two or more users share the same file at the same time, it is
necessary to define the semantics of reading and writing

 In single processor systems, a read
operation after a write will return
the value just written

 Such a model is referred to as
Unix Semantics

Single Machine

a bOriginal File

Process
A

a b c

Process
B

Unix Semantics In DFSs
 In a DFS, Unix semantics can be achieved easily if there is

only one file server and clients do not cache files

 Hence, all reads and writes go directly to the file server, which
processes them strictly sequentially

 This approach provides UNIX semantics, however,
performance might degrade as all file requests must go to a
single server

Caching and Unix Semantics
 The performance of a DFS with one single file server and Unix

semantics can be improved by caching

 If a client, however, locally modifies a cache file and shortly another
client reads the file from the server, it will get an obsolete file

File Server

Process
A

Client Machine #1 Client Machine #2

a b a b

1. Read “ab”

a b c

2. Write “c”

3. Read gets “ab”

Process
B

a b

Session Semantics (1)
 One way out of getting an obsolete file is to propagate all changes to

cached files back to the server immediately

 Implementing such an approach is very difficult

 An alternative solution is to relax the semantics of file sharing

Changes to an open file are initially visible only to the process
that modified the file. Only when the file is closed, the changes
are made visible to other processes.

Session
Semantics

Session Semantics (2)
 Using session semantics raises the question of what happens if two

or more clients are simultaneously caching and modifying the
same file

 One solution is to say that as each file is closed in turn, its value is
sent back to the server

 The final result depends on whose close request is most recently
processed by the server

 A less pleasant solution, but easier to implement, is to say that the
final result is one of the candidates and leave the choice of the
candidate unspecified

Immutable Semantics (1)
 A different approach to the semantics of file sharing in DFSs

is to make all files immutable

 With immutable semantics there is no way to open a file
for writing

 What is possible is to create an entirely new file

 Hence, the problem of how to deal with two processes, one
writing and the other reading, just disappears

Immutable Semantics (2)
 However, what happens if two processes try to replace the

same file?

 Allow one of the new files to replace the old one (either the last one or
non-deterministically)

 What to do if a file is replaced while another process is busy
reading it?

 Solution 1: Arrange for the reader to continue using the old file
 Solution 2: Detect that the file has changed and make subsequent

attempts to read from it fail

Atomic Transactions

 A different approach to the semantics of file sharing in DFSs is to
use atomic transactions where all changes occur atomically

 A key property is that all calls contained in a transaction will be
carried out in-order

A process first executes some type of
BEGIN_TRANSACTION primitive to signal that
what follows must be executed indivisibly

Then come system calls to read and write one
or more files

When done, an END_TRANSACTION primitive
is executed

1

2

3

Semantics of File Sharing: Summary

 There are four ways of dealing with the shared files in a DFS:

Method Comment
UNIX Semantics Every operation on a file is instantly

visible to all processes
Session Semantics No changes are visible to other

processes until the file is closed
Immutable Files No updates are possible; simplifies

sharing and replication
Transactions All changes occur atomically

Method Comment
UNIX Semantics Every operation on a file is instantly

visible to all processes
Session Semantics No changes are visible to other

processes until the file is closed
Immutable Files No updates are possible; simplifies

sharing and replication
Transactions All changes occur atomically

Method Comment
UNIX Semantics Every operation on a file is instantly

visible to all processes
Session Semantics No changes are visible to other

processes until the file is closed
Immutable Files No updates are possible; simplifies

sharing and replication
Transactions All changes occur atomically

Method Comment
UNIX Semantics Every operation on a file is instantly

visible to all processes
Session Semantics No changes are visible to other

processes until the file is closed
Immutable Files No updates are possible; simplifies

sharing and replication
Transactions All changes occur atomically

Method Comment
UNIX Semantics Every operation on a file is instantly

visible to all processes
Session Semantics No changes are visible to other

processes until the file is closed
Immutable Files No updates are possible; simplifies

sharing and replication
Transactions All changes occur atomically

HDFS Semantics
 HDFS follows immutable semantics
 HDFS does not allow clients to modify an existing file
 All fresh write operations should be made to new files

 Designed for MapReduce
 Restricted computational model with predefined stages
 Each reducer in a MapReduce job writes an independent file for its

portion of the output

File A

File B

Client A

Client B

Client A

Client B

File A

PVFS semantics
 PVFS follows Unix semantics with restrictions
 Sequential consistency guaranteed for non-conflicting writes (write

operations to different regions of a file)
 If two clients write to the same region of the file, the behavior is

undefined

 Research prototypes of PVFS have write-anywhere support
 This is achieved by implementing an atomic transaction model

File
Client A

Client B

Client A

Client B

File

Synchronization In DFSs
 File Sharing Semantics
 Lock Management

Central Lock Manager

 In client-server architectures (especially with stateless servers),
additional facilities for synchronizing accesses to shared files
are required

 A central lock manager can be deployed where accesses to a
shared resource are synchronized by granting and denying
access permissions

P0 P1 P2

Central
Lock

Manager

Lock Request Lock Granted

Q
ue

ue

P0 P1 P2

Central
Lock

Manager

Lock Request

Lock D
enied

Q
ue

ue

P0 P1 P2

Central
Lock

Manager

Release
Lock Granted

Q
ue

ue2

Lease is obtained Lease is expired

2

DFS Aspects
Aspect Description

Architecture How are DFSs generally organized?

Processes • Who are the cooperating processes?
• Are processes stateful or stateless?

Communication • What is the typical communication paradigm followed
by DFSs?

• How do processes in DFSs communicate?
Naming How is naming often handled in DFSs?

Synchronization What are the file sharing semantics adopted by DFSs?

Consistency and Replication What are the various features of client-side caching as well
as server-side replication?

Fault Tolerance How is fault tolerance handled in DFSs?

Aspect Description
Architecture How are DFSs generally organized?

Processes • Who are the cooperating processes?
• Are processes stateful or stateless?

Communication • What is the typical communication paradigm followed
by DFSs?

• How do processes in DFSs communicate?
Naming How is naming often handled in DFSs?

Synchronization What are the file sharing semantics adopted by DFSs?

Consistency and Replication What are the various features of client-side caching as well
as server-side replication?

Fault Tolerance How is fault tolerance handled in DFSs?

Why Replication?
 Replication is the process of maintaining the data at multiple computers

 Replication is necessary for:
1. Improving performance

 A client can access the replicated copy of the data that is near to its location

2. Enhancing the scalability of the system
 Requests to the data can be distributed to many servers which contain replicated

copies of the data

22

Main Server

Replicated Servers

Why Replication?
 Replication is necessary for (Cont’d):

3. Increasing the availability of services
 Replication can mask failures such as server crashes and network disconnection

4. Securing against malicious attacks
 Even if some replicas are malicious, secure data can be guaranteed to the client

by relying on the replicated copies at the non-compromised servers

 If a minority of the servers that hold the data are malicious, the non-
malicious servers can outvote the malicious servers, thus providing security

23

1
5

6

3
7

0

4

2

23n = Servers with correct data n = Servers with faulty datan = Servers that do not
have the requested data

Number of servers with
correct data outvote the

faulty servers

Why Consistency?
 In a DS with replicated data, one of the main problems is keeping

the data consistent
 An example:

 In an e-commerce application, the bank database has been replicated
across two servers

 Maintaining consistency of replicated data is a challenge

24

Bal=1000 Bal=1000

Replicated Database

Event 1 = Add $1000 Event 2 = Add interest of 5%

Bal=2000

1 2

Bal=10503 Bal=20504Bal=2100

Client-Side Caching In HDFS
 Clients in HDFS cache the DataNode layout information received

from the NameNode
 This allows the clients to interact repeatedly and directly

with DataNodes

 HDFS stores lists of chunks for each file

 During reads, HDFS can fetch and cache the chunk list of a file
because HDFS files are immutable

 During writes, HDFS must contact the NameNode for each new
chunk allocation (as the file grows)

 HDFS does not cache any file data at the client machines

Client-Side Caching In PVFS
 Clients in PVFS cache the I/O server (iod) layout information

received from the MGR
 This allows the clients to interact repeatedly and directly with iods

 PVFS is able to easily cache a file’s layout because a stripe
unit’s location in an object is algorithmically derived from its
offset in the file

 PVFS does not need to contact the MGR for each new stripe
unit allocation

 PVFS does not cache any file data at the client machines

Consistency models in HDFS and PVFS

 In large distributed systems with many concurrent writes,
consistency is typically a potential source of bottleneck

 HDFS follows write-once-read-many semantics
 Only one writer per file and no appending to a file by another client
 Simplified model does not require any consistency model

 PVFS allows concurrent writes
 Only for non-overlapping segments of a file, sequential

consistency guaranteed in this case
 If two clients write to same file segment, the result is undefined
 Appending to a file also not supported

DFS Aspects
Aspect Description

Architecture How are DFSs generally organized?

Processes • Who are the cooperating processes?
• Are processes stateful or stateless?

Communication • What is the typical communication paradigm followed
by DFSs?

• How do processes in DFSs communicate?
Naming How is naming often handled in DFSs?

Synchronization What are the file sharing semantics adopted by DFSs?

Consistency and Replication What are the various features of client-side caching as well
as server-side replication?

Fault Tolerance How is fault tolerance handled in DFSs?

Aspect Description
Architecture How are DFSs generally organized?

Processes • Who are the cooperating processes?
• Are processes stateful or stateless?

Communication • What is the typical communication paradigm followed
by DFSs?

• How do processes in DFSs communicate?
Naming How is naming often handled in DFSs?

Synchronization What are the file sharing semantics adopted by DFSs?

Consistency and Replication What are the various features of client-side caching as well
as server-side replication?

Fault Tolerance How is fault tolerance handled in DFSs?

Failures, Due to What?
 Failures can happen due to a variety of reasons:

 Hardware faults
 Software bugs
 Network errors/outages

 A system is said to fail when it cannot meet its promises

29

Failures in Distributed Systems
 A characteristic feature of distributed systems that

distinguishes them from single-machine systems is the
notion of a partial failure

 A partial failure may happen when a component in a
distributed system fails

 This failure may affect the proper operation of other components,
while at the same time leaving yet other components unaffected

30

Goal and Fault-Tolerance
 An overall goal in distributed systems is to construct the system in

such a way that it can automatically recover from partial failures

 Fault-tolerance is the property that enables a system to continue operating
properly in the event of failures

 For example, TCP is designed to allow reliable two-way communication in
a packet-switched network, even in the presence of communication links
which are imperfect or overloaded

Tire punctured.
Car stops.

Tire punctured,

recovered and continued.

31

Faults, Errors and Failures

A system is said to be fault tolerant if it can provide its services even in
the presence of faults

Fault Error Failure

Transient Intermittent Permanent

32

Fault Tolerance in HDFS
 Faults are handled in HDFS though replication

 Default replication factor is 3

 Replica placement in HDFS tries to protect against node and rack
failures

Rack 1

node

Rack 2

node

1 2

3

DataNode Failures
 DataNode failures are detected using a heartbeat mechanism

 DataNodes periodically send heartbeat messages to the NameNode to indicate
that they are alive

 A network disconnection can cause a subset of DataNodes to lose connectivity
with the NameNode

 The NameNode detects this condition by the absence of heartbeat messages

 The NameNode marks DataNodes without recent heartbeats as dead and does
not forward any new IO requests to them

 DataNode death may cause the replication factor of some blocks to fall below
their specified value

 The NameNode constantly tracks which blocks need to be replicated and
initiates replication whenever necessary

NameNode Failure
 NameNode failure brings HDFS completely down as files cannot be

mapped to the respective blocks on DataNodes
 HDFS uses a checkpointing mechanism denoted as the

Secondary NameNode

 The secondary NameNode is not a backup NameNode (hence, it cannot
take over the primary NameNode’s function upon a NameNode failure)

 The secondary NameNode holds an out-of-date copy of the primary’s
persistent state, which, in extremis, can be used to recover HDFS’s
metadata state

 There is ongoing work to create a true backup NameNode

Fault Tolerance in PVFS
 PVFS originally did not address fault-tolerance at the file

system level
 Hardware reliability systems such as RAID were used to handle

disk failures
 An I/O server failure would lead to loss of data

 PVFS2 introduced “high-availability” configuration for better
fault tolerance
 Optional configuration scheme for PVFS2

 Similar to HDFS
 Heartbeat mechanism detects storage node failures
 Spare nodes can be configured as well to write replicas in parallel

HDFS Versus PVFS
Hadoop Distributed File System (HDFS) Parallel Virtual File System (PVFS)

Architecture Co-locate storage and compute (beneficial to
Hadoop model where computation is moved closer
to the data)

Separate Compute and Storage Nodes

Metadata Location Central Metadata on NameNode Central Metadata on MGR

Data Layout File blocks randomly placed; block location
exposed to Hadoop applications

Round-robin striping of data blocks;
location not exposed to applications

Synchronization and Sharing
Semantics

Immutable Semantics – Only one concurrent writer
per file

Unix Semantics - POSIX sequential
consistency guaranteed for non-
conflicting writes

Naming Central Namespace maintained by NameNode,
accessed through API calls

FS mounted simultaneously to all nodes,
metadata handled by Master node

Client-Side Caching Only for Metadata Only for Metadata

Fault Tolerance Heartbeat mechanism and rack-aware replication No file system level support; relies on
RAID on/across storage devices; PVFS2
introduces HA mode similar to HDFS

Designed for Data Intensive Computing, Cloud Computing High Performance Computing

Hadoop Distributed File System (HDFS) Parallel Virtual File System (PVFS)

Architecture Co-locate storage and compute (beneficial to
Hadoop model where computation is moved closer
to the data)

Separate Compute and Storage Nodes

Metadata Location Central Metadata on NameNode Central Metadata on MGR

Data Layout File blocks randomly placed; block location
exposed to Hadoop applications

Round-robin striping of data blocks;
location not exposed to applications

Synchronization and Sharing
Semantics

Immutable Semantics – Only one concurrent writer
per file

Unix Semantics - POSIX sequential
consistency guaranteed for non-
conflicting writes

Naming Central Namespace maintained by NameNode,
accessed through API calls

FS mounted simultaneously to all nodes,
metadata handled by Master node

Client-Side Caching Only for Metadata Only for Metadata

Fault Tolerance Heartbeat mechanism and rack-aware replication No file system level support; relies on
RAID on/across storage devices; PVFS2
introduces HA mode similar to HDFS

Designed for Data Intensive Computing, Cloud Computing High Performance Computing

Hadoop Distributed File System (HDFS) Parallel Virtual File System (PVFS)

Architecture Co-locate storage and compute (beneficial to
Hadoop model where computation is moved closer
to the data)

Separate Compute and Storage Nodes

Metadata Location Central Metadata on NameNode Central Metadata on MGR

Data Layout File blocks randomly placed; block location
exposed to Hadoop applications

Round-robin striping of data blocks;
location not exposed to applications

Synchronization and Sharing
Semantics

Immutable Semantics – Only one concurrent writer
per file

Unix Semantics - POSIX sequential
consistency guaranteed for non-
conflicting writes

Naming Central Namespace maintained by NameNode,
accessed through API calls

FS mounted simultaneously to all nodes,
metadata handled by Master node

Client-Side Caching Only for Metadata Only for Metadata

Fault Tolerance Heartbeat mechanism and rack-aware replication No file system level support; relies on
RAID on/across storage devices; PVFS2
introduces HA mode similar to HDFS

Designed for Data Intensive Computing, Cloud Computing High Performance Computing

Hadoop Distributed File System (HDFS) Parallel Virtual File System (PVFS)

Architecture Co-locate storage and compute (beneficial to
Hadoop model where computation is moved closer
to the data)

Separate Compute and Storage Nodes

Metadata Location Central Metadata on NameNode Central Metadata on MGR

Data Layout File blocks randomly placed; block location
exposed to Hadoop applications

Round-robin striping of data blocks;
location not exposed to applications

Synchronization and Sharing
Semantics

Immutable Semantics – Only one concurrent writer
per file

Unix Semantics - POSIX sequential
consistency guaranteed for non-
conflicting writes

Naming Central Namespace maintained by NameNode,
accessed through API calls

FS mounted simultaneously to all nodes,
metadata handled by Master node

Client-Side Caching Only for Metadata Only for Metadata

Fault Tolerance Heartbeat mechanism and rack-aware replication No file system level support; relies on
RAID on/across storage devices; PVFS2
introduces HA mode similar to HDFS

Designed for Data Intensive Computing, Cloud Computing High Performance Computing

Hadoop Distributed File System (HDFS) Parallel Virtual File System (PVFS)

Architecture Co-locate storage and compute (beneficial to
Hadoop model where computation is moved closer
to the data)

Separate Compute and Storage Nodes

Metadata Location Central Metadata on NameNode Central Metadata on MGR

Data Layout File blocks randomly placed; block location
exposed to Hadoop applications

Round-robin striping of data blocks;
location not exposed to applications

Synchronization and Sharing
Semantics

Immutable Semantics – Only one concurrent writer
per file

Unix Semantics - POSIX sequential
consistency guaranteed for non-
conflicting writes

Naming Central Namespace maintained by NameNode,
accessed through API calls

FS mounted simultaneously to all nodes,
metadata handled by Master node

Client-Side Caching Only for Metadata Only for Metadata

Fault Tolerance Heartbeat mechanism and rack-aware replication No file system level support; relies on
RAID on/across storage devices; PVFS2
introduces HA mode similar to HDFS

Designed for Data Intensive Computing, Cloud Computing High Performance Computing

Hadoop Distributed File System (HDFS) Parallel Virtual File System (PVFS)

Architecture Co-locate storage and compute (beneficial to
Hadoop model where computation is moved closer
to the data)

Separate Compute and Storage Nodes

Metadata Location Central Metadata on NameNode Central Metadata on MGR

Data Layout File blocks randomly placed; block location
exposed to Hadoop applications

Round-robin striping of data blocks;
location not exposed to applications

Synchronization and Sharing
Semantics

Immutable Semantics – Only one concurrent writer
per file

Unix Semantics - POSIX sequential
consistency guaranteed for non-
conflicting writes

Naming Central Namespace maintained by NameNode,
accessed through API calls

FS mounted simultaneously to all nodes,
metadata handled by Master node

Client-Side Caching Only for Metadata Only for Metadata

Fault Tolerance Heartbeat mechanism and rack-aware replication No file system level support; relies on
RAID on/across storage devices; PVFS2
introduces HA mode similar to HDFS

Designed for Data Intensive Computing, Cloud Computing High Performance Computing

Hadoop Distributed File System (HDFS) Parallel Virtual File System (PVFS)

Architecture Co-locate storage and compute (beneficial to
Hadoop model where computation is moved closer
to the data)

Separate Compute and Storage Nodes

Metadata Location Central Metadata on NameNode Central Metadata on MGR

Data Layout File blocks randomly placed; block location
exposed to Hadoop applications

Round-robin striping of data blocks;
location not exposed to applications

Synchronization and Sharing
Semantics

Immutable Semantics – Only one concurrent writer
per file

Unix Semantics - POSIX sequential
consistency guaranteed for non-
conflicting writes

Naming Central Namespace maintained by NameNode,
accessed through API calls

FS mounted simultaneously to all nodes,
metadata handled by Master node

Client-Side Caching Only for Metadata Only for Metadata

Fault Tolerance Heartbeat mechanism and rack-aware replication No file system level support; relies on
RAID on/across storage devices; PVFS2
introduces HA mode similar to HDFS

Designed for Data Intensive Computing, Cloud Computing High Performance Computing

Hadoop Distributed File System (HDFS) Parallel Virtual File System (PVFS)

Architecture Co-locate storage and compute (beneficial to
Hadoop model where computation is moved closer
to the data)

Separate Compute and Storage Nodes

Metadata Location Central Metadata on NameNode Central Metadata on MGR

Data Layout File blocks randomly placed; block location
exposed to Hadoop applications

Round-robin striping of data blocks;
location not exposed to applications

Synchronization and Sharing
Semantics

Immutable Semantics – Only one concurrent writer
per file

Unix Semantics - POSIX sequential
consistency guaranteed for non-
conflicting writes

Naming Central Namespace maintained by NameNode,
accessed through API calls

FS mounted simultaneously to all nodes,
metadata handled by Master node

Client-Side Caching Only for Metadata Only for Metadata

Fault Tolerance Heartbeat mechanism and rack-aware replication No file system level support; relies on
RAID on/across storage devices; PVFS2
introduces HA mode similar to HDFS

Designed for Data Intensive Computing, Cloud Computing High Performance Computing

Hadoop Distributed File System (HDFS) Parallel Virtual File System (PVFS)

Architecture Co-locate storage and compute (beneficial to
Hadoop model where computation is moved closer
to the data)

Separate Compute and Storage Nodes

Metadata Location Central Metadata on NameNode Central Metadata on MGR

Data Layout File blocks randomly placed; block location
exposed to Hadoop applications

Round-robin striping of data blocks;
location not exposed to applications

Synchronization and Sharing
Semantics

Immutable Semantics – Only one concurrent writer
per file

Unix Semantics - POSIX sequential
consistency guaranteed for non-
conflicting writes

Naming Central Namespace maintained by NameNode,
accessed through API calls

FS mounted simultaneously to all nodes,
metadata handled by Master node

Client-Side Caching Only for Metadata Only for Metadata

Fault Tolerance Heartbeat mechanism and rack-aware replication No file system level support; relies on
RAID on/across storage devices; PVFS2
introduces HA mode similar to HDFS

Designed for Data Intensive Computing, Cloud Computing High Performance Computing

Next Class

BigTable

