
Cloud Computing
CS 15-319

Distributed File Systems and Cloud Storage – Part II
Lecture 13, Feb 27, 2012

Majd F. Sakr, Mohammad Hammoud and 
Suhail Rehman 

1



Today…

 Last session
 Distributed File Systems and Cloud Storage- Part I

 Today’s session
 Distributed File Systems and Cloud Storage- Part II

 Announcement:
 Project update is due next Wednesday, Feb 29

2



Discussion on Distributed File Systems

3

Distributed File Systems (DFSs)

Basics DFS AspectsBasics



DFS Aspects
Aspect Description

Architecture How are DFSs generally organized?

Processes • Who are the cooperating processes? 
• Are processes stateful or stateless?

Communication • What is the typical communication paradigm followed 
by DFSs?

• How do processes in DFSs communicate?
Naming How is naming often handled in DFSs?

Synchronization What are the file sharing semantics adopted by DFSs?

Consistency and Replication What are the various features of client-side caching as well 
as server-side replication? 

Fault Tolerance How is fault tolerance handled in DFSs?

Aspect Description
Architecture How are DFSs generally organized?

Processes • Who are the cooperating processes? 
• Are processes stateful or stateless?

Communication • What is the typical communication paradigm followed 
by DFSs?

• How do processes in DFSs communicate?
Naming How is naming often handled in DFSs?

Synchronization What are the file sharing semantics adopted by DFSs?

Consistency and Replication What are the various features of client-side caching as well 
as server-side replication? 

Fault Tolerance How is fault tolerance handled in DFSs?



DFS Aspects
Aspect Description

Architecture How are DFSs generally organized?

Processes • Who are the cooperating processes? 
• Are processes stateful or stateless?

Communication • What is the typical communication paradigm followed 
by DFSs?

• How do processes in DFSs communicate?
Naming How is naming often handled in DFSs?

Synchronization What are the file sharing semantics adopted by DFSs?

Consistency and Replication What are the various features of client-side caching as well 
as server-side replication? 

Fault Tolerance How is fault tolerance handled in DFSs?

Aspect Description
Architecture How are DFSs generally organized?

Processes • Who are the cooperating processes? 
• Are processes stateful or stateless?

Communication • What is the typical communication paradigm followed 
by DFSs?

• How do processes in DFSs communicate?
Naming How is naming often handled in DFSs?

Synchronization What are the file sharing semantics adopted by DFSs?

Consistency and Replication What are the various features of client-side caching as well 
as server-side replication? 

Fault Tolerance How is fault tolerance handled in DFSs?

Aspect Description
Architecture How are DFSs generally organized?

Processes • Who are the cooperating processes? 
• Are processes stateful or stateless?

Communication • What is the typical communication paradigm followed 
by DFSs?

• How do processes in DFSs communicate?
Naming How is naming often handled in DFSs?

Synchronization What are the file sharing semantics adopted by DFSs?

Consistency and Replication What are the various features of client-side caching as well 
as server-side replication? 

Fault Tolerance How is fault tolerance handled in DFSs?



Processes (1)
 Cooperating processes in DFSs are usually the storage servers

and file manager(s)

 The most important aspect concerning DFS processes is whether
they should be stateless or stateful

1. Stateless Approach:

 Does not require that servers maintain any client state
 When a server crashes, there is no need to enter a recovery

phase to bring the server to a previous state
 Locking a file cannot be easily done
 E.g., NFSv3 and PVFS (no client-side caching)



Processes (2)
2. Stateful Approach:

 Requires that a server maintains some client state

 Clients can make effective use of caches but this would entail an
efficient underlying cache consistency protocol

 Provides a server with the ability to support callbacks (i.e., the ability
to do RPC to a client) in order to keep track of its clients

 E.g., NFSv4 and HDFS



DFS Aspects
Aspect Description

Architecture How are DFSs generally organized?

Processes • Who are the cooperating processes? 
• Are processes stateful or stateless?

Communication • What is the typical communication paradigm followed 
by DFSs?

• How do processes in DFSs communicate?
Naming How is naming often handled in DFSs?

Synchronization What are the file sharing semantics adopted by DFSs?

Consistency and Replication What are the various features of client-side caching as well 
as server-side replication? 

Fault Tolerance How is fault tolerance handled in DFSs?

Aspect Description
Architecture How are DFSs generally organized?

Processes • Who are the cooperating processes? 
• Are processes stateful or stateless?

Communication • What is the typical communication paradigm followed 
by DFSs?

• How do processes in DFSs communicate?
Naming How is naming often handled in DFSs?

Synchronization What are the file sharing semantics adopted by DFSs?

Consistency and Replication What are the various features of client-side caching as well 
as server-side replication? 

Fault Tolerance How is fault tolerance handled in DFSs?

Aspect Description
Architecture How are DFSs generally organized?

Processes • Who are the cooperating processes? 
• Are processes stateful or stateless?

Communication • What is the typical communication paradigm followed 
by DFSs?

• How do processes in DFSs communicate?
Naming How is naming often handled in DFSs?

Synchronization What are the file sharing semantics adopted by DFSs?

Consistency and Replication What are the various features of client-side caching as well 
as server-side replication? 

Fault Tolerance How is fault tolerance handled in DFSs?

Aspect Description
Architecture How are DFSs generally organized?

Processes • Who are the cooperating processes? 
• Are processes stateful or stateless?

Communication • What is the typical communication paradigm followed 
by DFSs?

• How do processes in DFSs communicate?
Naming How is naming often handled in DFSs?

Synchronization What are the file sharing semantics adopted by DFSs?

Consistency and Replication What are the various features of client-side caching as well 
as server-side replication? 

Fault Tolerance How is fault tolerance handled in DFSs?



Communication
 Communication in DFSs is typically based on remote procedure

calls (RPCs)

 The main reason for choosing RPC is to make the system independent from
underlying OSs, networks, and transport protocols

 In NFS, all communication between a client and server proceeds along the
Open Network Computing RPC (ONC RPC)

 HDFS uses RPC for the communication between clients, DataNodes and
the NameNode

 PVFS currently uses TCP for all its internal communication
 The communication with I/O daemons and the manager is handled transparently

within the API implementation



DFS Aspects
Aspect Description

Architecture How are DFSs generally organized?

Processes • Who are the cooperating processes? 
• Are processes stateful or stateless?

Communication • What is the typical communication paradigm followed 
by DFSs?

• How do processes in DFSs communicate?
Naming How is naming often handled in DFSs?

Synchronization What are the file sharing semantics adopted by DFSs?

Consistency and Replication What are the various features of client-side caching as well 
as server-side replication? 

Fault Tolerance How is fault tolerance handled in DFSs?

Aspect Description
Architecture How are DFSs generally organized?

Processes • Who are the cooperating processes? 
• Are processes stateful or stateless?

Communication • What is the typical communication paradigm followed 
by DFSs?

• How do processes in DFSs communicate?
Naming How is naming often handled in DFSs?

Synchronization What are the file sharing semantics adopted by DFSs?

Consistency and Replication What are the various features of client-side caching as well 
as server-side replication? 

Fault Tolerance How is fault tolerance handled in DFSs?



Naming
 Names are used to uniquely identify entities in distributed systems

 Entities may be processes, remote objects, newsgroups, …

 Names are mapped to an entity’s location using a name resolution

 An example of name resolution

Name http://www.cdk5.net:8888/WebExamples/earth.html

55.55.55.55 WebExamples/earth.html8888
DNS Lookup

02:60:8c:02:b0:5a

Resource ID (IP Address, Port, File Path)

MAC address
Host



Naming In DFSs

NFS is considered as a representative of how 
naming is handled in DFSs



Naming In NFS

 The fundamental idea underlying the NFS naming model is to
provide clients with complete transparency

 Transparency in NFS is achieved by allowing a client to
mount a remote file system into its own local file system

 However, instead of mounting an entire file system, NFS
allows clients to mount only part of a file system

 A server is said to export a directory to a client when a client
mounts a directory, and its entries, into its own name space



Mounting in NFS

remote usr

vu

mbox

Client A

users usr

steen

mbox

Server

work usr

me

mbox

Client B

Exported directory
mounted by Client A

Exported directory
mounted by Client B

The file named /remote/vu/mbox
at Client A

The file named /work/vu/mbox
at Client BSharing files becomes harder

Mount steen 
subdirectory Mount steen 

subdirectory



Sharing Files In NFS

 A common solution for sharing files in NFS is to provide
each client with a name space that is partly standardized

 For example, each client may by using the local directory
/usr/bin to mount a file system

 A remote file system can then be mounted in the same
manner for each user



Example

remote usr

bin

mbox

Client A

users usr

steen

mbox

Server

work usr

bin

mbox

Client B

Exported directory
mounted by Client A

Exported directory
mounted by Client B

The file named /usr/bin/mbox
at Client A

The file named /usr/bin/mbox
at Client BSharing files resolved

Mount steen 
subdirectory Mount steen 

subdirectory



Mounting Nested Directories In NFSv3

 An NFS server, S, can itself mount directories, Ds, that are exported
by other servers

 However, in NFSv3, S is not allowed to export Ds to its own clients

 Instead, a client of S will have to explicitly mount Ds

 If S will be allowed to export Ds, it would have to return to its clients
file handles that include identifiers for the exporting servers

 NFSv4 solves this problem



Mounting Nested Directories in NFS

bin

draw

install

Client

packages

draw

install

Server A

install

Server B

Client imports directory
from server A

Server A imports directory
from server B

Client needs to explicitly import 
subdirectory from server B



NFS: Mounting Upon Logging In (1) 

 Another problem with the NFS naming model has to do with
deciding when a remote file system should be mounted

 Example: Let us assume a large system with 1000s of users and
that each user has a local directory /home that is used to mount the
home directories of other users

 Alice’s (a user) home directory is made locally available to her as
/home/alice

 This directory can be automatically mounted when Alice logs into
her workstation

 In addition, Alice may have access to Bob’s (another user) public files
by accessing Bob’s directory through /home/bob



NFS: Mounting Upon Logging In (2)

 Example (Cont’d):

 The question, however, is whether Bob’s home directory should also be
mounted automatically when Alice logs in

 If automatic mounting is followed for each user:

 Logging in could incur a lot of communication and
administrative overhead

 All users should be known in advance

 A better approach is to transparently mount another user’s home
directory on-demand



On-Demand Mounting In NFS

 On-demand mounting of a remote file system is handled in NFS by an
automounter, which runs as a separate process on the client’s machine

Client Machine

NFS Client Automounter

Local File System Interface

1. Lookup “/home/alice”

3. Mount request

2. Create subdir “alice”

home

alice

Server Machine

alice

users



Naming in HDFS

 An HDFS cluster consists of a single NameNode (the master) and
multiple DataNodes (the slaves)

 The NameNode manages HDFS namespace and regulates
accesses to files by clients
 It executes file system namespace operations (e.g., opening, closing,

and renaming files and directories)
 It is an arbitrator and repository for all HDFS metadata
 It determines the mapping of blocks to DataNodes

 The DataNodes manage storage attached to the nodes that they run on
 They are responsible for serving read and write requests from clients
 They perform block creation, deletion, and replication upon instructions

from the NameNode



A Client Reading Data from HDFS
 Here is the main sequence of events when reading a file in HDFS

NameNode
FSDataInputStream

DistributedFileSystem

HDFS 
Client

6. Close

Client JVM

Client Node

namenode

DataNode

namenode

DataNode

namenode

DataNode

namenode



Data Reads
 DistributedFileSystem calls the NameNode, using RPC, to determine the

locations of the blocks for the first few blocks in the file

 For each block, the NameNode returns the addresses of the
DataNodes that have a copy of that block

 During the read process, DFSInputStream calls the NameNode to
retrieve the DataNode locations for the next batch of blocks needed

 The DataNodes are sorted according to their proximity to the client in
order to exploit data locality

 An important aspect of this design is that the client contacts DataNodes
directly to retrieve data and is guided by the NameNode to the best
DataNode for each block



A Client Writing Data to HDFS
 Here is the main sequence of events when writing a file to HDFS (the

case assumes creating a new file, writing data to it, then closing the file)

NameNode
FSDataOutputStream

DistributedFileSystem

HDFS 
Client

6. Close

Client JVM

Client Node

namenode

DataNode

namenode

DataNode

namenode

DataNode

namenode

4

5

4

5

Pipeline of DataNodes



Data Pipelining
 When a client is writing data to an HDFS file, its data is first written to a

local file

 When the local file accumulates a full block of user data, the client retrieves
a list of DataNodes from the NameNode

 The client then flushes the block to the first DataNode

 The first DataNode:
 Starts receiving the data in small portions (4KB)
 Writes each portion to its local repository
 Transfers that portion to the subsequent DataNode in the list

 A subsequent DataNode follows the same steps as the previous DataNode
 Thus, the data is pipelined from one DataNode to the next



PVFS System View

N
et

w
or

k

Metadata 
Manager

I/O Nodes

Compute 
Nodes

 Some major components of the PVFS system:
 Metadata server (mgr)
 I/O server (iod)
 PVFS native API (libpvfs)

 The mgr manages all file metadata for
PVFS files

 The iods handle storing and retrieving file data
stored on local disks connected to the node

 Libpvfs:
 provides user-space access to the PVFS

servers
 handles the scatter/gather operations

necessary to move data between user
buffers and PVFS servers



Naming in PVFS

 PVFS file systems may be mounted on all nodes in the same
directory simultaneously

 This allows all nodes to see and access all files on the PVFS file
system through the same directory scheme

 Once mounted, PVFS files and directories can be operated on with
all the familiar tools, such as ls, cp, and rm

 With PVFS, clients can avoid making requests to the file system
through the kernel by linking to the PVFS native API
 This library implements a subset of the UNIX operations which directly

contact PVFS servers rather than passing through the local kernel



Metadata and Data Accesses

 For metadata operations, applications communicate through the
library with the metadata server

 For data access, the metadata server is eliminated from the access
path and instead I/O servers are contacted directly

Metadata Access Data Access



Next Class: DFS Aspects
Aspect Description

Architecture How are DFSs generally organized?

Processes • Who are the cooperating processes? 
• Are processes stateful or stateless?

Communication • What is the typical communication paradigm followed 
by DFSs?

• How do processes in DFSs communicate?
Naming How is naming often handled in DFSs?

Synchronization What are the file sharing semantics adopted by DFSs?

Consistency and Replication What are the various features of client-side caching as well 
as server-side replication? 

Fault Tolerance How is fault tolerance handled in DFSs?

Aspect Description
Architecture How are DFSs generally organized?

Processes • Who are the cooperating processes? 
• Are processes stateful or stateless?

Communication • What is the typical communication paradigm followed 
by DFSs?

• How do processes in DFSs communicate?
Naming How is naming often handled in DFSs?

Synchronization What are the file sharing semantics adopted by DFSs?

Consistency and Replication What are the various features of client-side caching as well 
as server-side replication? 

Fault Tolerance How is fault tolerance handled in DFSs?

Aspect Description
Architecture How are DFSs generally organized?

Processes • Who are the cooperating processes? 
• Are processes stateful or stateless?

Communication • What is the typical communication paradigm followed 
by DFSs?

• How do processes in DFSs communicate?
Naming How is naming often handled in DFSs?

Synchronization What are the file sharing semantics adopted by DFSs?

Consistency and Replication What are the various features of client-side caching as well 
as server-side replication? 

Fault Tolerance How is fault tolerance handled in DFSs?

Aspect Description
Architecture How are DFSs generally organized?

Processes • Who are the cooperating processes? 
• Are processes stateful or stateless?

Communication • What is the typical communication paradigm followed 
by DFSs?

• How do processes in DFSs communicate?
Naming How is naming often handled in DFSs?

Synchronization What are the file sharing semantics adopted by DFSs?

Consistency and Replication What are the various features of client-side caching as well 
as server-side replication? 

Fault Tolerance How is fault tolerance handled in DFSs?

Aspect Description
Architecture How are DFSs generally organized?

Processes • Who are the cooperating processes? 
• Are processes stateful or stateless?

Communication • What is the typical communication paradigm followed 
by DFSs?

• How do processes in DFSs communicate?
Naming How is naming often handled in DFSs?

Synchronization What are the file sharing semantics adopted by DFSs?

Consistency and Replication What are the various features of client-side caching as well 
as server-side replication? 

Fault Tolerance How is fault tolerance handled in DFSs?


