
Cloud Computing
CS 15-319

Distributed File Systems and Cloud Storage – Part I
Lecture 12, Feb 22, 2012

Majd F. Sakr, Mohammad Hammoud and 
Suhail Rehman 

1



Today…

 Last two sessions
 Pregel, Dryad and GraphLab

 Today’s session
 Distributed File Systems- Part I

 Announcement:
 Project update is due today

2



Discussion on Distributed File Systems

3

Distributed File Systems (DFSs)

Basics DFS Aspects



Distributed File Systems
 Why File Systems?

 To organize data (as files)
 To provide a means for applications to store, access, and modify data

 Why Distributed File Systems?

 Big data continues to grow

 In contrary to a local file system, a distributed file system (DFS)
can hold big data and provide access to this data to many clients
distributed across a network



NAS versus SAN
 Another term for DFS is network attached storage (NAS), referring

to attaching storage to network servers that provide file systems

 A similar sounding term that refers to a very different approach is
storage area network (SAN)
 SAN makes storage devices (not file systems) available over

a network

Client 
Computer

Client 
Computer

Client 
Computer

Client 
Computer

LAN

File Server 
(Providing 

NAS)

Database 
Server

SAN



Benefits of DFSs
 DFSs provide:

1. File sharing over a network: without a DFS, we would have to
exchange files by e-mail or use applications such as the
Internet’s FTP

2. Transparent files accesses: A user’s programs can access
remote files as if they are local. The remote files have no
special APIs; they are accessed just like local ones

3. Easy file management: managing a DFS is easier than
managing multiple local file systems



DFS Components
 DFS information can be typically categorized as follows:

1. The data state: This is the contents of files
2. The attribute state (meta data): This is the information about each file

(e.g., file’s size and access control list)
3. The open-file state: This includes which files are open or otherwise in

use, as well as describing how files are locked

 Designing a DFS entails determining how its various components
are placed. Specifically, by component placement we indicate:

 What resides on the servers
 What resides on the clients



DFS Component Placement (1)
 The data and the attribute states permanently reside on the server’s

local file system, but recently accessed or modified information
might reside in server and/or client caches

 The open-file state is transitory; it changes as processes open
and close files

Data Cache

Attribute Cache

Open-File State

Data Cache

Attribute Cache

Open-File State

Local File System

Client Server

Network



DFS Component Placement (2)
 Three basic concerns govern the DFS components

placement strategy:

1. Access speed: Caching information on clients improves
performance considerably

2. Consistency: If clients cache information, do all parties share
the same view of it?

3. Recovery: If one or more computers crash, to what extent are
the others affected? How much information is lost?



Discussion on Distributed File Systems

10

Distributed File Systems (DFSs)

Basics DFS AspectsBasics



DFS Aspects
Aspect Description

Architecture How are DFSs generally organized?

Processes • Who are the cooperating processes? 
• Are processes stateful or stateless?

Communication • What is the typical communication paradigm followed 
by DFSs?

• How do processes in DFSs communicate?
Naming How is naming often handled in DFSs?

Synchronization What are the file sharing semantics adopted by DFSs?

Consistency and Replication What are the various features of client-side caching as well 
as server-side replication? 

Fault Tolerance How is fault tolerance handled in DFSs?

Aspect Description
Architecture How are DFSs generally organized?

Processes • Who are the cooperating processes? 
• Are processes stateful or stateless?

Communication • What is the typical communication paradigm followed 
by DFSs?

• How do processes in DFSs communicate?
Naming How is naming often handled in DFSs?

Synchronization What are the file sharing semantics adopted by DFSs?

Consistency and Replication What are the various features of client-side caching as well 
as server-side replication? 

Fault Tolerance How is fault tolerance handled in DFSs?

Aspect Description
Architecture How are DFSs generally organized?

Processes • Who are the cooperating processes? 
• Are processes stateful or stateless?

Communication • What is the typical communication paradigm followed 
by DFSs?

• How do processes in DFSs communicate?
Naming How is naming often handled in DFSs?

Synchronization What are the file sharing semantics adopted by DFSs?

Consistency and Replication What are the various features of client-side caching as well 
as server-side replication? 

Fault Tolerance How is fault tolerance handled in DFSs?

Aspect Description
Architecture How are DFSs generally organized?

Processes • Who are the cooperating processes? 
• Are processes stateful or stateless?

Communication • What is the typical communication paradigm followed 
by DFSs?

• How do processes in DFSs communicate?
Naming How is naming often handled in DFSs?

Synchronization What are the file sharing semantics adopted by DFSs?

Consistency and Replication What are the various features of client-side caching as well 
as server-side replication? 

Fault Tolerance How is fault tolerance handled in DFSs?

Aspect Description
Architecture How are DFSs generally organized?

Processes • Who are the cooperating processes? 
• Are processes stateful or stateless?

Communication • What is the typical communication paradigm followed 
by DFSs?

• How do processes in DFSs communicate?
Naming How is naming often handled in DFSs?

Synchronization What are the file sharing semantics adopted by DFSs?

Consistency and Replication What are the various features of client-side caching as well 
as server-side replication? 

Fault Tolerance How is fault tolerance handled in DFSs?

Aspect Description
Architecture How are DFSs generally organized?

Processes • Who are the cooperating processes? 
• Are processes stateful or stateless?

Communication • What is the typical communication paradigm followed 
by DFSs?

• How do processes in DFSs communicate?
Naming How is naming often handled in DFSs?

Synchronization What are the file sharing semantics adopted by DFSs?

Consistency and Replication What are the various features of client-side caching as well 
as server-side replication? 

Fault Tolerance How is fault tolerance handled in DFSs?

Aspect Description
Architecture How are DFSs generally organized?

Processes • Who are the cooperating processes? 
• Are processes stateful or stateless?

Communication • What is the typical communication paradigm followed 
by DFSs?

• How do processes in DFSs communicate?
Naming How is naming often handled in DFSs?

Synchronization What are the file sharing semantics adopted by DFSs?

Consistency and Replication What are the various features of client-side caching as well 
as server-side replication? 

Fault Tolerance How is fault tolerance handled in DFSs?

Aspect Description
Architecture How are DFSs generally organized?

Processes • Who are the cooperating processes? 
• Are processes stateful or stateless?

Communication • What is the typical communication paradigm followed 
by DFSs?

• How do processes in DFSs communicate?
Naming How is naming often handled in DFSs?

Synchronization What are the file sharing semantics adopted by DFSs?

Consistency and Replication What are the various features of client-side caching as well 
as server-side replication? 

Fault Tolerance How is fault tolerance handled in DFSs?

Aspect Description
Architecture How are DFSs generally organized?

Processes • Who are the cooperating processes? 
• Are processes stateful or stateless?

Communication • What is the typical communication paradigm followed 
by DFSs?

• How do processes in DFSs communicate?
Naming How is naming often handled in DFSs?

Synchronization What are the file sharing semantics adopted by DFSs?

Consistency and Replication What are the various features of client-side caching as well 
as server-side replication? 

Fault Tolerance How is fault tolerance handled in DFSs?

Aspect Description
Architecture How are DFSs generally organized?

Processes • Who are the cooperating processes? 
• Are processes stateful or stateless?

Communication • What is the typical communication paradigm followed 
by DFSs?

• How do processes in DFSs communicate?
Naming How is naming often handled in DFSs?

Synchronization What are the file sharing semantics adopted by DFSs?

Consistency and Replication What are the various features of client-side caching as well 
as server-side replication? 

Fault Tolerance How is fault tolerance handled in DFSs?



DFS Aspects
Aspect Description

Architecture How are DFSs generally organized?

Processes • Who are the cooperating processes? 
• Are processes stateful or stateless?

Communication • What is the typical communication paradigm followed 
by DFSs?

• How do processes in DFSs communicate?
Naming How is naming often handled in DFSs?

Synchronization What are the file sharing semantics adopted by DFSs?

Consistency and Replication What are the various features of client-side caching as well 
as server-side replication? 

Fault Tolerance How is fault tolerance handled in DFSs?

Aspect Description
Architecture How are DFSs generally organized?

Processes • Who are the cooperating processes? 
• Are processes stateful or stateless?

Communication • What is the typical communication paradigm followed 
by DFSs?

• How do processes in DFSs communicate?
Naming How is naming often handled in DFSs?

Synchronization What are the file sharing semantics adopted by DFSs?

Consistency and Replication What are the various features of client-side caching as well 
as server-side replication? 

Fault Tolerance How is fault tolerance handled in DFSs?



Architectures
1. Client-Server Distributed File Systems
2. Cluster-Based Distributed File Systems
3. Symmetric Distributed File Systems



Network File System
 Many distributed file systems are organized along the lines of

client-server architectures

 Sun Microsystem’s Network File System (NFS) is one of the most
widely-deployed DFSs for Unix-based systems

 NFS comes with a protocol that describes precisely how a client can
access a file stored on a (remote) NFS file server

 NFS allows a heterogeneous collection of processes, possibly
running on different OSs and machines, to share a common
file system



Remote Access Model
 The model underlying NFS and similar systems is that of remote

access model

 In this model, clients:
 Are offered transparent access to a file system that is managed by a

remote server
 Are normally unaware of the actual location of files
 Are offered an interface to a file system similar to the interface offered

by a conventional local file system

File

File stays 
on server

Client
Server

Requests from
client to access

remote file

Replies from
server



Upload/Download Model
 A contrary model, referred to as upload/download model, allows a

client to access a file locally after having downloaded it
from the server

 The Internet’s FTP service can be used this way when a client
downloads a complete file, modifies it, and then puts it back

File

All accesses are 
done at the client side

File

New File

File moved to client

Client

Server

When client is done,
file is returned to the server



The Basic NFS Architecture

System call layer

Virtual File System 
(VFS) layer

Local file system 
interface NFS client

RPC client stub

System call layer

Virtual File System 
(VFS) layer

NFS server Local file system 
interface

RPC server stub

Network

Client Server

A Client Request in NFS



Architectures
1. Client-Server Distributed File Systems
2. Cluster-Based Distributed File Systems
3. Symmetric Distributed File Systems



Data-Intensive Applications
 Today there is a deluge of large data-intensive applications

 Most data-intensive applications fall 
into one of two styles of computing:

 Internet services (or cloud computing)
 High-performance computing (HPC)

 Cloud computing and HPC applications 
run typically on thousands of compute 
nodes and handle big data Visualization of entropy in Terascale

Supernova Initiative application. Image 
from Kwan-Liu Ma’s visualization team 
at UC Davis



Cluster-Based Distributed 
File Systems

 The underlying cluster-based file system is a key component for
providing scalable data-intensive application performance

 The cluster-based file system divides and distributes big data, using
file striping techniques, for allowing concurrent data accesses

 The cluster-based file system could be either a cloud computing or
an HPC oriented distributed file system
 Google File System (GFS) and S3 are examples of

cloud computing DFSs
 Parallel Virtual File System (PVFS) and IBM’s General Parallel File

System (GPFS) are examples of HPC DFSs



File Striping Techniques
 Server clusters are often used for parallel applications and their

associated file systems are adjusted to satisfy their requirements

 One well-known technique is to deploy file-striping techniques, by
which a single file is distributed across multiple servers

 Hence, it becomes possible to fetch different parts in parallel

a b

c

d e
a

c

d

a

e b b

e

d

c

Accessing file parts in parallel



Round-Robin Distribution (1)
 How to stripe a file over multiple machines?

 Round-Robin is typically a reasonable default solution

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Logical File

Stripe Size

Striping Unit

Server 1 Server 2 Server 3 Server 4

0 1 2 34 5 6 10 14 7 11 159 138 12



Round-Robin Distribution (2)
 Clients perform writes/reads of file at various regions

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Server 1 Server 2 Server 3 Server 4

0 1 2 34 5 6 10 14 7 11 159 138 12

Client I: 512K write, offset 0 Client II: 512K write, offset 512

0 4 1 5 2 6 3 7 8 12 9 13 10 14 11 15



2D Round-Robin Distribution (1)
 What happens when we have many servers (say 100s)?

 2D distribution can help

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Logical File

Stripe Size

Striping Unit

Server 1 Server 2 Server 3 Server 4

0 12 34 56 10 147 11 159 138 12

Group Size = 2



2D Round-Robin Distribution (2)
 2D distribution can limit the number of servers per client

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Client I: 512K write, offset 0 Client II: 512K write, offset 512

0 4 1 5 2 6 3 7 8 12 9 13 10 14 11 15

Server 1 Server 2 Server 3 Server 4

0 12 34 56 10 147 11 159 138 12

Group Size = 2



General Purpose Applications
 For general-purpose data-intensive applications, or those with

irregular or many different types of data structures, file striping may
not be effective

 In those cases, it is often more convenient to partition the file system
as a whole and simply store files on different servers

a

a

a

b

b

b

c

c

c

d

d

d

e

e

e

File block of file a



GFS Data Distribution Policy
 The Google File System (GFS) is a cloud-computing-based scalable 

DFS for large distributed data-intensive applications

 GFS divides large files into multiple pieces called chunks or blocks 
(by default 64MB) and stores them on different data servers
 This design is referred to as block-based design

 Each GFS chunk has a unique 64-bit identifier and is stored as a file 
in the lower-layer local file system on the data server

 GFS distributes chunks across cluster data servers using a random 
distribution policy



GFS Random Distribution Policy
Server 0
(Writer)

Blk
0

Blk
0

Blk
1

Blk
1

Blk
2

Blk
2

Blk
3

Blk
3

Blk
4

Blk
4

Blk
5

Blk
5

Blk
6

Blk
6

Server 1

Blk
0

Blk
0

Blk
2

Blk
2

Blk
3

Blk
3

Blk
3

Blk
3

Blk
5

Blk
5

0M

64M

128M

192M

256M

320M

384M

Server 2 Server 3

Blk
1

Blk
1

Blk
2

Blk
2

Blk
4

Blk
4

Blk
6

Blk
6

Blk
0

Blk
0

Blk
1

Blk
1

Blk
4

Blk
4

Blk
5

Blk
5

Blk
6

Blk
6

Load Imbalance



GFS Architecture

GFS client Master

Chunk Server

Linux File 
System

Chunk Server

Linux File 
System

Chunk Server

Linux File 
System

File name, chunk index

Contact address

Chunk Id, range

Chunk data

 The storage and compute capabilities of a cluster are organized in
two ways:
1. Co-locate storage and compute in the same node
2. Separate storage nodes from compute nodes

GFS



PVFS Data Distribution Policy 
 Parallel Virtual File System (PVFS) is an HPC-based scalable DFS 

for large distributed data-intensive applications

 PVFS divides large files into multiple pieces called stripe units (by 
default 64KB) and stores them on different data servers
 This design is referred to as object-based design

 Unlike the block-based design of GFS, PVFS stores an object (or a 
handle) as a file that includes all the stripe units at a data server

 PVFS distributes stripe units across cluster data servers using a
round robin policy



PVFS Round-Robin Distribution Policy

Server 0
(Writer)

Server 1

0M

64M

128M

192M

256M

320M

384M

Server 2 Server 3

Blk
0

Blk
0

Blk
1

Blk
1

Blk
2

Blk
2

Blk
4

Blk
4

Blk
5

Blk
5

Blk
6

Blk
6

Blk
0

Blk
0

Blk
1

Blk
1

Blk
3

Blk
3

Blk
5

Blk
5

Blk
4

Blk
4

Blk
0

Blk
0

Blk
2

Blk
2

Blk
4

Blk
4

Blk
6

Blk
6

Blk
3

Blk
3

Blk
1

Blk
1

Blk
2

Blk
2

Blk
3

Blk
3

Blk
5

Blk
5

Blk
6

Blk
6

Load Balance



PVFS Architecture

N
et

w
or

k

Metadata 
Manager

I/O
 N

od
es

C
om

pu
te

 N
od

es

 The storage and compute capabilities of a cluster are organized in
two ways:
1. Co-locate storage and compute in the same node
2. Separate storage nodes from compute nodesPVFS



Architectures
 Client-Server Distributed File Systems
 Cluster-Based Distributed File Systems
 Symmetric Distributed File Systems



Ivy
 Fully symmetric organizations that are based on peer-to-peer 

technology also exist

 All current proposals use a DHT-based system for distributing data, 
combined with a key-based lookup mechanism

 As an example, Ivy is a distributed file system that is built using a 
Chord DHT-based system

 Data storage in Ivy is realized by a block-oriented (i.e., blocks are 
distributed over storage nodes) distributed storage called DHash



Ivy Architecture
 Ivy consists of 3 separate layers:

Ivy

DHash

Chord

File System Layer

Block-Oriented Storage

DHT Layer

Ivy

DHash

Chord

Ivy

DHash

Chord

Node where a file system is rooted



DFS Aspects
Aspect Description

Architecture How are DFSs generally organized?

Processes • Who are the cooperating processes? 
• Are processes stateful or stateless?

Communication • What is the typical communication paradigm followed 
by DFSs?

• How do processes in DFSs communicate?
Naming How is naming often handled in DFSs?

Synchronization What are the file sharing semantics adopted by DFSs?

Consistency and Replication What are the various features of client-side caching as well 
as server-side replication? 

Fault Tolerance How is fault tolerance handled in DFSs?

Aspect Description
Architecture How are DFSs generally organized?

Processes • Who are the cooperating processes? 
• Are processes stateful or stateless?

Communication • What is the typical communication paradigm followed 
by DFSs?

• How do processes in DFSs communicate?
Naming How is naming often handled in DFSs?

Synchronization What are the file sharing semantics adopted by DFSs?

Consistency and Replication What are the various features of client-side caching as well 
as server-side replication? 

Fault Tolerance How is fault tolerance handled in DFSs?

Aspect Description
Architecture How are DFSs generally organized?

Processes • Who are the cooperating processes? 
• Are processes stateful or stateless?

Communication • What is the typical communication paradigm followed 
by DFSs?

• How do processes in DFSs communicate?
Naming How is naming often handled in DFSs?

Synchronization What are the file sharing semantics adopted by DFSs?

Consistency and Replication What are the various features of client-side caching as well 
as server-side replication? 

Fault Tolerance How is fault tolerance handled in DFSs?



Processes (1)
 Cooperating processes in DFSs are usually the storage servers

and file manager(s)

 The most important aspect concerning DFS processes is whether
they should be stateless or stateful

1. Stateless Approach:

 Does not require that servers maintain any client state
 When a server crashes, there is no need to enter a recovery

phase to bring the server to a previous state
 Locking a file cannot be easily done
 E.g., NFSv3 and PVFS (no client-side caching)



Processes (2)
2. Stateful Approach:

 Requires that a server maintains some client state

 Clients can make effective use of caches but this would entail an
efficient underlying cache consistency protocol

 Provides a server with the ability to support callbacks (i.e., the ability
to do RPC to a client) in order to keep track of its clients

 E.g., NFSv4 and HDFS



DFS Aspects
Aspect Description

Architecture How are DFSs generally organized?

Processes • Who are the cooperating processes? 
• Are processes stateful or stateless?

Communication • What is the typical communication paradigm followed 
by DFSs?

• How do processes in DFSs communicate?
Naming How is naming often handled in DFSs?

Synchronization What are the file sharing semantics adopted by DFSs?

Consistency and Replication What are the various features of client-side caching as well 
as server-side replication? 

Fault Tolerance How is fault tolerance handled in DFSs?

Aspect Description
Architecture How are DFSs generally organized?

Processes • Who are the cooperating processes? 
• Are processes stateful or stateless?

Communication • What is the typical communication paradigm followed 
by DFSs?

• How do processes in DFSs communicate?
Naming How is naming often handled in DFSs?

Synchronization What are the file sharing semantics adopted by DFSs?

Consistency and Replication What are the various features of client-side caching as well 
as server-side replication? 

Fault Tolerance How is fault tolerance handled in DFSs?

Aspect Description
Architecture How are DFSs generally organized?

Processes • Who are the cooperating processes? 
• Are processes stateful or stateless?

Communication • What is the typical communication paradigm followed 
by DFSs?

• How do processes in DFSs communicate?
Naming How is naming often handled in DFSs?

Synchronization What are the file sharing semantics adopted by DFSs?

Consistency and Replication What are the various features of client-side caching as well 
as server-side replication? 

Fault Tolerance How is fault tolerance handled in DFSs?

Aspect Description
Architecture How are DFSs generally organized?

Processes • Who are the cooperating processes? 
• Are processes stateful or stateless?

Communication • What is the typical communication paradigm followed 
by DFSs?

• How do processes in DFSs communicate?
Naming How is naming often handled in DFSs?

Synchronization What are the file sharing semantics adopted by DFSs?

Consistency and Replication What are the various features of client-side caching as well 
as server-side replication? 

Fault Tolerance How is fault tolerance handled in DFSs?



Communication
 Communication in DFSs is mainly based on remote procedure

calls (RPCs)

 The main reason for choosing RPC is to make the system
independent from underlying OSs, networks, and transport protocols

 In NFS, all communication between a client and server proceeds
along the Open Network Computing RPC (ONC RPC)

 GFS uses RPC and may break a read into multiple RPCs to
increase parallelism

 PVFS currently uses TCP for all its internal communication



RPCs in NFS
 Up until NFSv4, the client was made responsible 

for making the server’s life as easy as possible 
by keeping requests simple

 The drawback becomes apparent when considering 
the use of NFS in a wide-area system

 In that case, the extra latency of a second RPC
leads to performance degradation

 To circumvent such a problem, NFSv4 supports
compound procedures

Lookup

Lookup name

Read

Read file data

Ti
m

e

Client Server

Lookup
Open
Read

Lookup name

Read file data

Ti
m

e

Client Server

Open file



Next Class: DFS Aspects
Aspect Description

Architecture How are DFSs generally organized?

Processes • Who are the cooperating processes? 
• Are processes stateful or stateless?

Communication • What is the typical communication paradigm followed 
by DFSs?

• How do processes in DFSs communicate?
Naming How is naming often handled in DFSs?

Synchronization What are the file sharing semantics adopted by DFSs?

Consistency and Replication What are the various features of client-side caching as well 
as server-side replication? 

Fault Tolerance How is fault tolerance handled in DFSs?

Aspect Description
Architecture How are DFSs generally organized?

Processes • Who are the cooperating processes? 
• Are processes stateful or stateless?

Communication • What is the typical communication paradigm followed 
by DFSs?

• How do processes in DFSs communicate?
Naming How is naming often handled in DFSs?

Synchronization What are the file sharing semantics adopted by DFSs?

Consistency and Replication What are the various features of client-side caching as well 
as server-side replication? 

Fault Tolerance How is fault tolerance handled in DFSs?

Aspect Description
Architecture How are DFSs generally organized?

Processes • Who are the cooperating processes? 
• Are processes stateful or stateless?

Communication • What is the typical communication paradigm followed 
by DFSs?

• How do processes in DFSs communicate?
Naming How is naming often handled in DFSs?

Synchronization What are the file sharing semantics adopted by DFSs?

Consistency and Replication What are the various features of client-side caching as well 
as server-side replication? 

Fault Tolerance How is fault tolerance handled in DFSs?

Aspect Description
Architecture How are DFSs generally organized?

Processes • Who are the cooperating processes? 
• Are processes stateful or stateless?

Communication • What is the typical communication paradigm followed 
by DFSs?

• How do processes in DFSs communicate?
Naming How is naming often handled in DFSs?

Synchronization What are the file sharing semantics adopted by DFSs?

Consistency and Replication What are the various features of client-side caching as well 
as server-side replication? 

Fault Tolerance How is fault tolerance handled in DFSs?

Aspect Description
Architecture How are DFSs generally organized?

Processes • Who are the cooperating processes? 
• Are processes stateful or stateless?

Communication • What is the typical communication paradigm followed 
by DFSs?

• How do processes in DFSs communicate?
Naming How is naming often handled in DFSs?

Synchronization What are the file sharing semantics adopted by DFSs?

Consistency and Replication What are the various features of client-side caching as well 
as server-side replication? 

Fault Tolerance How is fault tolerance handled in DFSs?


