
Cloud Computing
CS 15-319

Pregel
Lecture 10, Feb 15, 2012

Majd F. Sakr, Suhail Rehman and
Mohammad Hammoud

Today…

 Last session
 Apache Mahout, Guest Lecture

 Today’s session
 Pregel

 Announcement:
 Project Phases I-A and I-B are due today

2© Carnegie Mellon University in Qatar

Objectives

Discussion on Programming Models

Why
parallelism?

Parallel
computer
architectures

Traditional
models of
parallel
programming

Examples of
parallel
processing

Message
Passing
Interface (MPI)

Pregel, Dryad
and GraphLab

Last 3 Sessions

MapReduce

Pregel, Dryad
and GraphLab

© Carnegie Mellon University in Qatar 3

4

Pregel

© Carnegie Mellon University in Qatar

Pregel
 In this part, the following concepts of Pregel will

be described:

 Motivation for Pregel
 The Pregel Computation Model
 The Pregel API
 Execution of a Pregel Program
 Fault Tolerance in Pregel

5© Carnegie Mellon University in Qatar

Pregel
 In this part, the following concepts of Pregel will

be described:

 Motivation for Pregel
 The Pregel Computation Model
 The Pregel API
 Execution of a Pregel Program
 Fault Tolerance in Pregel

6© Carnegie Mellon University in Qatar

Motivation for Pregel
 How to implement algorithms to process large graphs?

 Create a custom distributed infrastructure for each new algorithm

 Rely on existing distributed computing platforms such as MapReduce

 Use a single-computer graph algorithm library like BGL, LEDA,
NetworkX etc.

 Use a parallel graph processing system like Parallel BGL or CGMGraph

7© Carnegie Mellon University in Qatar

Motivation for Pregel
 How to implement algorithms to process large graphs?

 Create a custom distributed infrastructure for each new algorithm

 Rely on existing distributed computing platforms such as MapReduce

 Use a single-computer graph algorithm library like BGL, LEDA,
NetworkX etc.

 Use a parallel graph processing system like Parallel BGL or CGMGraph

8

Difficult!

Inefficient and Cumbersome!

Too large to fit on single machine!

Not suited for Large Scale Distributed Systems!

© Carnegie Mellon University in Qatar

Pregel
 Pregel is a framework developed by Google. It provides:

 High scalability
 Fault-tolerance
• Flexibility in expressing arbitrary graph algorithms

 Pregel is inspired by Valiant’s Bulk Synchronous Parallel
(BSP) model

9© Carnegie Mellon University in Qatar

Bulk Synchronous Parallel
Model

10

Data

Data

Data

Data

Data

Data

Data

Data

Data

Data

Data

Data

Data

Data

CPU 1

CPU 2

CPU 3

CPU 1

CPU 2

CPU 3

Data

Data

Data

Data

Data

Data

Data

CPU 1

CPU 2

CPU 3

Iterations

B
ar

rie
r

B
ar

rie
r

Data

Data

Data

Data

Data

Data

Data

B
ar

rie
r

© Carnegie Mellon University in Qatar

Pregel
 In this part, the following concepts of Pregel will

be described:

 Motivation for Pregel
 The Pregel Computation Model
 The Pregel API
 Execution of a Pregel Program
 Fault Tolerance in Pregel

11© Carnegie Mellon University in Qatar

Entities and Supersteps
 The computation is described in terms of vertices, edges and a

sequence of iterations called supersteps

 You give Pregel a directed graph consisting of
vertices and edges
 Each vertex is associated with a modifiable

user-defined value
 Each edge is associated with a source vertex, value

and a destination vertex

 During a superstep:
 A user-defined function F is executed at each vertex V
 F can read messages sent to V in superstep S – 1 and send messages to other

vertices that will be received at superstep S + 1
 F can modify the state of V and its outgoing edges
 F can change the topology of the graph

12© Carnegie Mellon University in Qatar

Algorithm Termination
 Algorithm termination is based on every vertex voting to halt

 In superstep 0, every vertex is active
 All active vertices participate in the computation of any given superstep
 A vertex deactivates itself by voting

to halt and enters an inactive state
 A vertex can return to active state

if it receives an external message

 Program terminates when all vertices
are simultaneously inactive and there are no messages in transit

13

Active Inactive

Vote to Halt

Message Received

Vertex State Machine

© Carnegie Mellon University in Qatar

Finding the Max Value in a Graph

3 6 2 1

3 6 2 16 2 66

6 6 2 66 6

6 6 6 66

Blue Arrows
are messages

Blue vertices
have voted to
halt

6

© Carnegie Mellon University in Qatar 14

Pregel
 In this part, the following concepts of Pregel will

be described:

 Motivation for Pregel
 The Pregel Computation Model
 The Pregel API
 Execution of a Pregel Program
 Fault Tolerance in Pregel

15© Carnegie Mellon University in Qatar

The Pregel API in C++
 A Pregel program is written by subclassing the vertex class:

16

template <typename VertexValue,
typename EdgeValue,
typename MessageValue>

class Vertex {
public:

virtual void Compute(MessageIterator* msgs) = 0;

const string& vertex_id() const;
int64 superstep() const;
const VertexValue& GetValue();
VertexValue* MutableValue();
OutEdgeIterator GetOutEdgeIterator();

void SendMessageTo(const string& dest_vertex,
const MessageValue& message);

void VoteToHalt();
};

Override the
compute function to

define the
computation at
each superstep

To pass messages
to other vertices

To define the types for vertices,
edges and messages

To get the value of the
current vertex

To modify the value of
the vertex

© Carnegie Mellon University in Qatar

Pregel Code for Finding the Max
Value

Class MaxFindVertex
: public Vertex<double, void, double> {

public:
virtual void Compute(MessageIterator* msgs) {

int currMax = GetValue();
SendMessageToAllNeighbors(currMax);
for (; !msgs->Done(); msgs->Next()) {

if (msgs->Value() > currMax)
currMax = msgs->Value();

}
if (currMax > GetValue())

*MutableValue() = currMax;
else VoteToHalt();

}
};

© Carnegie Mellon University in Qatar 17

Message Passing, Combiners, and
Aggregators

 Messages can be passed from any vertex to any other vertex in the
Graph

 Any number of messages may be passed
 Message order is not guaranteed
 Messages will not be duplicated

 Combiners can be used to reduce the number of messages passed
between supersteps

 Aggregators are available for reduction operations such as
sum, min, max etc.

18© Carnegie Mellon University in Qatar

Topology Mutations, Input and Output

 The graph structure can be modified during any superstep
 Vertices and edges can be added or deleted
 Conflicts are handled using partial ordering of operations
 User-defined handlers are also available to manage conflicts

 Flexible input and output formats
 Text File
 Relational Database
 Bigtable Entries

 Interpretation of input is a “pre-processing” step separate from graph
computation
 Custom formats can be created by sub-classing the Reader and Writer

classes

19© Carnegie Mellon University in Qatar

Pregel
 In this part, the following concepts of Pregel will

be described:

 Motivation for Pregel
 The Pregel Computation Model
 The Pregel API
 Execution of a Pregel Program
 Fault Tolerance in Pregel

20© Carnegie Mellon University in Qatar

Graph Partitioning
 The input graph is divided into partitions consisting of vertices and

outgoing edges
 Default partitioning function is hash(ID) mod N, where N is the # of partitions
 It can be customized

1 4

107

2

85

6

9

3

11

12

© Carnegie Mellon University in Qatar 21

Execution of a Pregel Program
 Steps of Program Execution:

1. Copies of the program are distributed across all workers
1.1 One copy is designated as a master

2. Master partitions the graph and assigns workers their respective
partition(s) along with portions of the input

3. Master coordinates the execution of supersteps and delivers messages
among vertices

4. Master calculates the number of inactive vertices after each superstep
and signals workers to terminate if all vertices are inactive and no
messages are in transit

5. Each worker may be instructed to save its portion of the graph

22© Carnegie Mellon University in Qatar

Pregel
 In this part, the following concepts of Pregel will

be described:

 Motivation for Pregel
 The Pregel Computation Model
 The Pregel API
 Execution of a Pregel Program
 Fault Tolerance in Pregel

23© Carnegie Mellon University in Qatar

Fault Tolerance in Pregel
 Fault tolerance is achieved through checkpointing

 At the start of every superstep the master may instruct the workers to
save the state of their partitions in a stable storage

 Master uses ping messages to detect worker failures

 If a worker fails, the master reassigns corresponding vertices and
input to another available worker and restarts the superstep

 The available worker reloads the partition state of the failed worker from
the most recent available checkpoint

24© Carnegie Mellon University in Qatar

Next Class

Dryad and GraphLab

© Carnegie Mellon University in Qatar 25

