
Cloud Computing
CS 15-319

Programming Models- Part I
Lecture 4, Jan 25, 2012

Majd F. Sakr and Mohammad Hammoud

Today…

 Last 3 sessions
 Administrivia and Introduction to Cloud Computing
 Introduction to Cloud Computing and Cloud Software Stack
 Course Project and Amazon AWS

 Today’s session
 Programming Models – Part I

 Announcement:
 Project update is due today

2© Carnegie Mellon University in Qatar

Objectives

Discussion on Programming Models

Why
parallelism?

Parallel
computer
architectures

Traditional
models of
parallel
programming

Examples of
parallel
processing

Message
Passing
Interface (MPI)

MapReduce

Pregel,
Dryad, and
GraphLab

Why
parallelism?

© Carnegie Mellon University in Qatar 3

Amdahl’s Law
 We parallelize our programs in order to run them faster

 How much faster will a parallel program run?

 Suppose that the sequential execution of a program takes T1 time units
and the parallel execution on p processors takes Tp time units

 Suppose that out of the entire execution of the program, s fraction of it is
not parallelizable while 1-s fraction is parallelizable

 Then the speedup (Amdahl’s formula):

4© Carnegie Mellon University in Qatar

Amdahl’s Law: An Example
 Suppose that 80% of you program can be parallelized and that you

use 4 processors to run your parallel version of the program

 The speedup you can get according to Amdahl is:

 Although you use 4 processors you cannot get a speedup more than
2.5 times (or 40% of the serial running time)

5© Carnegie Mellon University in Qatar

Real Vs. Actual Cases
 Amdahl’s argument is too simplified to be applied to real cases

 When we run a parallel program, there are a communication
overhead and a workload imbalance among processes in general

20 80

20 20
Process 1

Process 2

Process 3

Process 4

Serial

Parallel

1. Parallel Speed-up: An Ideal Case

Cannot be parallelized

Can be parallelized

20 80

20 20
Process 1

Process 2

Process 3

Process 4

Serial

Parallel

2. Parallel Speed-up: An Actual Case

Cannot be parallelized

Can be parallelized

Load Unbalance

Communication overhead

© Carnegie Mellon University in Qatar 6

Guidelines
 In order to efficiently benefit from parallelization, we

ought to follow these guidelines:

1. Maximize the fraction of our program that can be parallelized

2. Balance the workload of parallel processes

3. Minimize the time spent for communication

7© Carnegie Mellon University in Qatar

Objectives

Discussion on Programming Models

Why
parallelism?

Parallel
computer
architectures

Traditional
models of
parallel
programming

Examples of
parallel
processing

Message
Passing
Interface (MPI)

MapReduce

Pregel,
Dryad, and
GraphLab

Parallel
computer
architectures

© Carnegie Mellon University in Qatar 8

Parallel Computer Architectures

9

Parallel Computer Architectures

Multi-Chip
Multiprocessors

Single-Chip
Multiprocessors

Multi-Chip
Multiprocessors

© Carnegie Mellon University in Qatar

Multi-Chip Multiprocessors
 We can categorize the architecture of multi-chip multiprocessor

computers in terms of two aspects:

 Whether the memory is physically centralized or distributed
 Whether or not the address space is shared

10

M
em

ory

Address Space
Shared Individual

Centralized SMP (Symmetric Multiprocessor)/UMA
(Uniform Memory Access) Architecture

N/A

Distributed Distributed Shared Memory (DSM)/NUMA
(Non-Uniform Memory Access)
Architecture

MPP (Massively Parallel
Processors)/UMA
Architecture

M
em

ory

Address Space
Shared Individual

Centralized SMP (Symmetric Multiprocessor)/UMA
(Uniform Memory Access) Architecture

N/A

Distributed Distributed Shared Memory (DSM)/NUMA
(Non-Uniform Memory Access)
Architecture

MPP (Massively Parallel
Processors)/UMA
Architecture

M
em

ory

Address Space
Shared Individual

Centralized SMP (Symmetric Multiprocessor)/UMA
(Uniform Memory Access) Architecture

N/A

Distributed Distributed Shared Memory (DSM)/NUMA
(Non-Uniform Memory Access)
Architecture

MPP (Massively Parallel
Processors)/UMA
Architecture

M
em

ory

Address Space
Shared Individual

Centralized SMP (Symmetric Multiprocessor)/UMA
(Uniform Memory Access) Architecture

N/A

Distributed Distributed Shared Memory (DSM)/NUMA
(Non-Uniform Memory Access)
Architecture

MPP (Massively Parallel
Processors)/UMA
Architecture

M
em

ory

Address Space
Shared Individual

Centralized SMP (Symmetric Multiprocessor)/UMA
(Uniform Memory Access) Architecture

N/A

Distributed Distributed Shared Memory (DSM)/NUMA
(Non-Uniform Memory Access)
Architecture

MPP (Massively Parallel
Processors)/UMA
Architecture

© Carnegie Mellon University in Qatar

Symmetric Multiprocessors
 A system with Symmetric Multiprocessors (SMP) architecture uses a

shared memory that can be accessed equally from all processors

 Usually, a single OS controls the SMP system

11

Processor

Cache

Bus or Crossbar Switch

Memory I/O

Processor

Cache

Processor

Cache

Processor

Cache

© Carnegie Mellon University in Qatar

Massively Parallel Processors
 A system with a Massively Parallel Processors (MPP) architecture

consists of nodes with each having its own processor, memory and
I/O subsystem

 Typically, an independent OS runs at each node

12

Processor

Cache

Interconnection Network

Memory I/O

Bus

Processor

Cache

Memory I/O

Bus

Processor

Cache

Memory I/O

Bus

Processor

Cache

Memory I/O

Bus

© Carnegie Mellon University in Qatar

Distributed Shared Memory
 A Distributed Shared Memory (DSM) system is typically built on a

similar hardware model as MPP

 DSM provides a shared address space to applications using a
hardware/software directory-based coherence protocol

 The memory latency varies according to whether the memory is
accessed directly (a local access) or through the interconnect
(a remote access) (hence, NUMA)

 As in a SMP system, typically a single OS controls a DSM system

13© Carnegie Mellon University in Qatar

Parallel Computer Architectures

14

Parallel Computer Architectures

Multi-Chip
Multiprocessors

Single-Chip
Multiprocessors

Single-Chip
Multiprocessors

Multi-Chip
Multiprocessors

© Carnegie Mellon University in Qatar

Moore’s Law
 As chip manufacturing technology improves, transistors are getting smaller

and smaller and it is possible to put more of them on a chip

 This empirical observation is often called Moore’s Law (# of transistors
doubles every 18 to 24 months)

 An obvious question is: “What do we do with all these transistors”?

 This option is serious
 However, at some point increasing the cache size may only

increase the hit rate from 99% to 99.5%, which does not
improve application performance much

Option 1:
Add More
Cache to
the Chip

 This option is more serious
 Reduces complexity and power consumption as well as

improves performance

Option 2:
Add More

Processors
(Cores) to
the Chip

© Carnegie Mellon University in Qatar 15

Chip Multiprocessors
 The outcome is a single-chip multiprocessor referred to as Chip

Multiprocessor (CMP)

 CMP is currently considered the architecture of choice

 Cores in a CMP might be coupled either tightly or loosely
 Cores may or may not share caches
 Cores may implement a message passing or a shared memory inter-core

communication method

 Common CMP interconnects (referred to as Network-on-Chips or NoCs)
include bus, ring, 2D mesh, and crossbar

 CMPs could be homogeneous or heterogeneous:
 Homogeneous CMPs include only identical cores
 Heterogeneous CMPs have cores which are not identical

© Carnegie Mellon University in Qatar 16

Objectives

Discussion on Programming Models

Why
parallelism?

Parallel
computer
architectures

Traditional
models of
parallel
programming

Examples of
parallel
processing

Message
Passing
Interface (MPI)

MapReduce

Pregel,
Dryad, and
GraphLab

Traditional
models of
parallel
programming

© Carnegie Mellon University in Qatar 17

Models of Parallel Programming
 What is a parallel programming model?

 A programming model is an abstraction provided by the hardware
to programmers

 It determines how easily programmers can specify their algorithms into
parallel unit of computations (i.e., tasks) that the hardware understands

 It determines how efficiently parallel tasks can be executed on the hardware

 Main Goal: utilize all the processors of the underlying architecture
(e.g., SMP, MPP, CMP) and minimize the elapsed time of
your program

18© Carnegie Mellon University in Qatar

Traditional Parallel Programming
Models

19

Parallel Programming Models

Shared Memory Message Passing Message Passing

© Carnegie Mellon University in Qatar

Shared Memory Model
 In the shared memory programming model, the abstraction is that

parallel tasks can access any location of the memory

 Parallel tasks can communicate through reading and writing
common memory locations

 This is similar to threads from a single process which share a single
address space

 Multi-threaded programs (e.g., OpenMP programs) are the best fit
with shared memory programming model

20© Carnegie Mellon University in Qatar

Shared Memory Model

21

Process

S1

P1

P2

P3

P4

S2

Si = Serial
Pj = Parallel

Ti
m

e
Single Thread

S1

Ti
m

e

P1 P2 P3 P3

S2 Shared Address Space

Multi-Thread

Process

Spawn

Join

© Carnegie Mellon University in Qatar

Shared Memory Example

for (i=0; i<8; i++)
a[i] = b[i] + c[i];

sum = 0;
for (i=0; i<8; i++)

if (a[i] > 0)
sum = sum + a[i];

Print sum;

begin parallel // spawn a child thread
private int start_iter, end_iter, i;
shared int local_iter=4, sum=0;
shared double sum=0.0, a[], b[], c[];
shared lock_type mylock;

start_iter = getid() * local_iter;
end_iter = start_iter + local_iter;
for (i=start_iter; i<end_iter; i++)

a[i] = b[i] + c[i];
barrier;

for (i=start_iter; i<end_iter; i++)
if (a[i] > 0) {
lock(mylock);
sum = sum + a[i];

unlock(mylock);
}

barrier; // necessary

end parallel // kill the child thread
Print sum;

Sequential

Parallel
© Carnegie Mellon University in Qatar 22

Why Locks?
 Unfortunately, threads in a shared memory model need to synchronize

 This is usually achieved through mutual exclusion

 Mutual exclusion requires that when there are multiple threads, only one
thread is allowed to write to a shared memory location (or the critical
section) at any time

 How to guarantee mutual exclusion in a critical section?
 Typically, a lock can be implemented

//In a high level language
void lock (int *lockvar) {

while (*lockvar == 1) {} ;
*lockvar = 1;

}
void unlock (int *lockvar) {

*lockvar = 0;
}

In machine language, it looks like this:

lock: ld R1, &lockvar
bnz R1, lock
st &lockvar, #1
ret

unlock: st &lockvar, #0
ret

Is this Enough/Correct?

© Carnegie Mellon University in Qatar 23

The Synchronization Problem
 Let us check if this works:

 The execution of ld, bnz, and sti is not atomic (or indivisible)
 Several threads may be executing them at the same time

 This allows several threads to enter the critical section simultaneously

24

lock: ld R1, &lockvar
bnz R1, lock
sti &lockvar, #1

Thread 0

lock: ld R1, &lockvar
bnz R1, lock
sti &lockvar, #1

Thread 1

Time

Both will enter the
critical section

© Carnegie Mellon University in Qatar

The Peterson’s Algorithm
 To solve this problem, let us consider a software solution referred to

as the Peterson’s Algorithm [Tanenbaum, 1992]

25

int turn;
int interested[n]; // initialized to 0

void lock (int process, int lvar) { // process is 0 or 1
int other = 1 – process;
interested[process] = TRUE;
turn = process;
while (turn == process && interested[other] == TRUE) {} ;

}
// Post: turn != process or interested[other] == FALSE

void unlock (int process, int lvar) {
interested[process] = FALSE;

}

© Carnegie Mellon University in Qatar

No Race

26

interested[0] = TRUE;
turn = 0;
while (turn == 0 && interested[1] == TRUE)
{} ;

Since interested[1] is FALSE,
Thread 0 enters the critical section

interested[0] = FALSE;

Thread 0

Since turn is 1 and interested[0] is TRUE,
Thread 1 waits in the loop until Thread 0

releases the lock

Now Thread 1 exits the loop and can
acquire the lock

Thread 1

interested[1] = TRUE;
turn = 1;
while (turn == 1 && interested[0] == TRUE)
{} ;

Time •
•
•

No Synchronization
Problem

© Carnegie Mellon University in Qatar

With Race

27

interested[0] = TRUE;
turn = 0;

while (turn == 0 && interested[1] == TRUE)
{} ;

Although interested[1] is TRUE, turn is 1,
Hence, Thread 0 enters the critical section

interested[0] = FALSE;

Thread 0

Since turn is 1 and interested[0] is TRUE,
Thread 1 waits in the loop until Thread 0

releases the lock

Now Thread 1 exits the loop and can
acquire the lock

Thread 1
interested[1] = TRUE;

turn = 1;
while (turn == 1 && interested[0] == TRUE)
{} ;

Time

•
•
•

No Synchronization
Problem

© Carnegie Mellon University in Qatar

Traditional Parallel Programming
Models

28

Parallel Programming Models

Shared Memory Message Passing Shared Memory

© Carnegie Mellon University in Qatar

Message Passing Model
 In message passing, parallel tasks have their own local memories

 One task cannot access another task’s memory

 Hence, to communicate data they have to rely on explicit messages
sent to each other

 This is similar to the abstraction of processes which do not share an
address space

 Message Passing Interface (MPI) programs are the best fit with the
message passing programming model

29© Carnegie Mellon University in Qatar

Message Passing Model

30

S1

P1

P2

P3

P4

S2

S = Serial
P = Parallel

Ti
m

e
Single Thread

Process 0

S1

P1

S2

Ti
m

e

Message Passing

Node 1

Process 1

S1

P1

S2

Node 2

Process 2

S1

P1

S2

Node 3

Process 3

S1

P1

S2

Node 4

Data transmission over the Network

Process

© Carnegie Mellon University in Qatar

Message Passing Example

for (i=0; i<8; i++)
a[i] = b[i] + c[i];

sum = 0;
for (i=0; i<8; i++)

if (a[i] > 0)
sum = sum + a[i];

Print sum;

Sequential

Parallel

id = getpid();
local_iter = 4;
start_iter = id * local_iter;
end_iter = start_iter + local_iter;

if (id == 0)
send_msg (P1, b[4..7], c[4..7]);

else
recv_msg (P0, b[4..7], c[4..7]);

for (i=start_iter; i<end_iter; i++)
a[i] = b[i] + c[i];

local_sum = 0;
for (i=start_iter; i<end_iter; i++)

if (a[i] > 0)
local_sum = local_sum + a[i];

if (id == 0) {
recv_msg (P1, &local_sum1);
sum = local_sum + local_sum1;
Print sum;

}
else

send_msg (P0, local_sum);

No Mutual Exclusion is
Required!

© Carnegie Mellon University in Qatar 31

Shared Memory Vs. Message Passing

 Comparison between shared memory and message passing
programming models:

32

Aspect Shared Memory Message Passing

Communication Implicit (via loads/stores) Explicit Messages

Synchronization Explicit Implicit (Via Messages)

Hardware Support Typically Required None

Development Effort Lower Higher

Tuning Effort Higher Lower

Aspect Shared Memory Message Passing

Communication Implicit (via loads/stores) Explicit Messages

Synchronization Explicit Implicit (Via Messages)

Hardware Support Typically Required None

Development Effort Lower Higher

Tuning Effort Higher Lower

Aspect Shared Memory Message Passing

Communication Implicit (via loads/stores) Explicit Messages

Synchronization Explicit Implicit (Via Messages)

Hardware Support Typically Required None

Development Effort Lower Higher

Tuning Effort Higher Lower

Aspect Shared Memory Message Passing

Communication Implicit (via loads/stores) Explicit Messages

Synchronization Explicit Implicit (Via Messages)

Hardware Support Typically Required None

Development Effort Lower Higher

Tuning Effort Higher Lower

Aspect Shared Memory Message Passing

Communication Implicit (via loads/stores) Explicit Messages

Synchronization Explicit Implicit (Via Messages)

Hardware Support Typically Required None

Development Effort Lower Higher

Tuning Effort Higher Lower

© Carnegie Mellon University in Qatar

Objectives

Discussion on Programming Models

Why
parallelism?

Parallel
computer
architectures

Traditional
models of
parallel
programming

Examples of
parallel
processing

Message
Passing
Interface (MPI)

MapReduce

Pregel,
Dryad, and
GraphLab

Examples of
parallel
processing

© Carnegie Mellon University in Qatar 33

SPMD and MPMD
 When we run multiple processes with message-passing, there are

further categorizations regarding how many different programs are
cooperating in parallel execution

 We distinguish between two models:

1. Single Program Multiple Data (SPMD) model

2. Multiple Programs Multiple Data (MPMP) model

34© Carnegie Mellon University in Qatar

SPMD
 In the SPMD model, there is only one program and each process

uses the same executable working on different sets of data

35

a.out

Node 1 Node 2 Node 3

© Carnegie Mellon University in Qatar

MPMD
 The MPMD model uses different programs for different processes,

but the processes collaborate to solve the same problem

 MPMD has two styles, the master/worker and the coupled analysis

a.out

Node 1 Node 2 Node 3

b.out a.out

Node 1

b.out

Node 2

c.out

Node 3

1. MPMD: Master/Slave 2. MPMD: Coupled Analysis

a.out= Structural Analysis,
b.out = fluid analysis and
c.out = thermal analysis

Example

© Carnegie Mellon University in Qatar 36

An Example
A Sequential Program

1. Read array a() from the input file
2. Set is=1 and ie=6 //is = index start and ie = index end
3. Process from a(is) to a(ie)
4. Write array a() to the output file

a

a

a

1 2 3 4 5 6
is ie

 Colored shapes indicate the initial
values of the elements

 Black shapes indicate the values
after they are processed

© Carnegie Mellon University in Qatar 37

An Example
Process 0

1. Read array a() from the
input file

2. Get my rank
3. If rank==0 then

is=1, ie=2
If rank==1 then
is=3, ie=4
If rank==2 then
is=5, ie=6

4. Process from a(is) to
a(ie)

5. Gather the results to
process 0

6. If rank==0 then write
array a() to the output
file

a

a

a

1 2 3 4 5 6
is ie

Process 1
1. Read array a() from the

input file
2. Get my rank
3. If rank==0 then

is=1, ie=2
If rank==1 then
is=3, ie=4
If rank==2 then
is=5, ie=6

4. Process from a(is) to
a(ie)

5. Gather the results to
process 0

6. If rank==0 then write
array a() to the output
file

a

a

1 2 3 4 5 6
is ie

Process 2
1. Read array a() from the

input file
2. Get my rank
3. If rank==0 then

is=1, ie=2
If rank==1 then
is=3, ie=4
If rank==2 then
is=5, ie=6

4. Process from a(is) to
a(ie)

5. Gather the results to
process 0

6. If rank==0 then write
array a() to the output
file

a

a

1 2 3 4 5 6
is ie

© Carnegie Mellon University in Qatar 38

Concluding Remarks
 To summarize, keep the following 3 points in mind:

 The purpose of parallelization is to reduce the time spent
for computation

 Ideally, the parallel program is p times faster than the sequential
program, where p is the number of processes involved in the parallel
execution, but this is not always achievable

 Message-passing is the tool to consolidate what parallelization has
separated. It should not be regarded as the parallelization itself

39© Carnegie Mellon University in Qatar

Next Class

Discussion on Programming Models

Why
parallelism?

Parallel
computer
architectures

Traditional
models of
parallel
programming

Examples of
parallel
processing

Message
Passing
Interface (MPI)

MapReduce

Pregel,
Dryad, and
GraphLab

© Carnegie Mellon University in Qatar 40

