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Today…

 Last 3 sessions
 Administrivia and Introduction to Cloud Computing
 Introduction to Cloud Computing and Cloud Software Stack
 Course Project and Amazon AWS

 Today’s session
 Programming Models – Part I

 Announcement:
 Project update is due today
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Amdahl’s Law
 We parallelize our programs in order to run them faster

 How much faster will a parallel program run?

 Suppose that the sequential execution of a program takes T1 time units 
and the parallel execution on p processors takes Tp time units

 Suppose that out of the entire execution of the program, s fraction of it is 
not parallelizable while 1-s fraction is parallelizable

 Then the speedup (Amdahl’s formula):
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Amdahl’s Law: An Example
 Suppose that 80% of you program can be parallelized and that you 

use 4 processors to run your parallel version of the program

 The speedup you can get according to Amdahl is:

 Although you use 4 processors you cannot get a speedup more than 
2.5 times (or 40% of the serial running time)
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Real Vs. Actual Cases
 Amdahl’s argument is too simplified to be applied to real cases

 When we run a parallel program, there are a communication
overhead and a workload imbalance among processes in general
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Guidelines
 In order to efficiently benefit from parallelization, we

ought to follow these guidelines:

1. Maximize the fraction of our program that can be parallelized

2. Balance the workload of parallel processes

3. Minimize the time spent for communication
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Parallel Computer Architectures
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Multi-Chip Multiprocessors
 We can categorize the architecture of multi-chip multiprocessor

computers in terms of two aspects:

 Whether the memory is physically centralized or distributed
 Whether or not the address space is shared
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Symmetric Multiprocessors
 A system with Symmetric Multiprocessors (SMP) architecture uses a

shared memory that can be accessed equally from all processors

 Usually, a single OS controls the SMP system
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Massively Parallel Processors
 A system with a Massively Parallel Processors (MPP) architecture

consists of nodes with each having its own processor, memory and
I/O subsystem

 Typically, an independent OS runs at each node
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Distributed Shared Memory
 A Distributed Shared Memory (DSM) system is typically built on a

similar hardware model as MPP

 DSM provides a shared address space to applications using a
hardware/software directory-based coherence protocol

 The memory latency varies according to whether the memory is
accessed directly (a local access) or through the interconnect
(a remote access) (hence, NUMA)

 As in a SMP system, typically a single OS controls a DSM system

13© Carnegie Mellon University in Qatar



Parallel Computer Architectures
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Moore’s Law
 As chip manufacturing technology improves, transistors are getting smaller

and smaller and it is possible to put more of them on a chip

 This empirical observation is often called Moore’s Law (# of transistors
doubles every 18 to 24 months)

 An obvious question is: “What do we do with all these transistors”?

 This option is serious
 However, at some point increasing the cache size may only 

increase the hit rate from 99% to 99.5%, which does not 
improve application performance much

Option 1:
Add More 
Cache to 
the Chip

 This option is more serious
 Reduces complexity and power consumption as well as 

improves performance

Option 2:
Add More 

Processors
(Cores) to 
the Chip
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Chip Multiprocessors
 The outcome is a single-chip multiprocessor referred to as Chip

Multiprocessor (CMP)

 CMP is currently considered the architecture of choice

 Cores in a CMP might be coupled either tightly or loosely
 Cores may or may not share caches
 Cores may implement a message passing or a shared memory inter-core

communication method

 Common CMP interconnects (referred to as Network-on-Chips or NoCs) 
include bus, ring, 2D mesh, and crossbar

 CMPs could be homogeneous or heterogeneous:
 Homogeneous CMPs include only identical cores
 Heterogeneous CMPs have cores which are not identical
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Models of Parallel Programming
 What is a parallel programming model?

 A programming model is an abstraction provided by the hardware
to programmers

 It determines how easily programmers can specify their algorithms into
parallel unit of computations (i.e., tasks) that the hardware understands

 It determines how efficiently parallel tasks can be executed on the hardware

 Main Goal: utilize all the processors of the underlying architecture
(e.g., SMP, MPP, CMP) and minimize the elapsed time of
your program
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Traditional Parallel Programming 
Models
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Shared Memory Model
 In the shared memory programming model, the abstraction is that

parallel tasks can access any location of the memory

 Parallel tasks can communicate through reading and writing
common memory locations

 This is similar to threads from a single process which share a single
address space

 Multi-threaded programs (e.g., OpenMP programs) are the best fit
with shared memory programming model
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Shared Memory Model
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Shared Memory Example

for (i=0; i<8; i++)
a[i] = b[i] + c[i];

sum = 0;
for (i=0; i<8; i++)

if (a[i] > 0)
sum = sum + a[i];

Print sum;

begin parallel // spawn a child thread
private int start_iter, end_iter, i;
shared int local_iter=4, sum=0;
shared double sum=0.0, a[], b[], c[];
shared lock_type mylock;

start_iter = getid() * local_iter;
end_iter = start_iter + local_iter;
for (i=start_iter; i<end_iter; i++)

a[i] = b[i] + c[i];
barrier;

for (i=start_iter; i<end_iter; i++)
if (a[i] > 0) {
lock(mylock);
sum = sum + a[i];

unlock(mylock);
}

barrier;    // necessary

end parallel // kill the child thread
Print sum;

Sequential

Parallel
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Why Locks?
 Unfortunately, threads in a shared memory model need to synchronize

 This is usually achieved through mutual exclusion

 Mutual exclusion requires that when there are multiple threads, only one
thread is allowed to write to a shared memory location (or the critical
section) at any time

 How to guarantee mutual exclusion in a critical section?
 Typically, a lock can be implemented

//In a high level language
void lock (int *lockvar) {

while (*lockvar == 1) {} ;  
*lockvar = 1;

} 
void unlock (int *lockvar) {

*lockvar = 0;
}

In machine language, it looks like this: 

lock: ld  R1, &lockvar    
bnz R1, lock        
st  &lockvar, #1    
ret                 

unlock: st  &lockvar, #0 
ret               

Is this Enough/Correct?
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The Synchronization Problem
 Let us check if this works:

 The execution of ld, bnz, and sti is not atomic (or indivisible)
 Several threads may be executing them at the same time

 This allows several threads to enter the critical section simultaneously
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lock: ld  R1, &lockvar    
bnz R1, lock        
sti &lockvar, #1    

Thread 0

lock: ld  R1, &lockvar    
bnz R1, lock        
sti &lockvar, #1    

Thread 1

Time

Both will enter the 
critical section
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The Peterson’s Algorithm
 To solve this problem, let us consider a software solution referred to

as the Peterson’s Algorithm [Tanenbaum, 1992]
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int turn;
int interested[n];  // initialized to 0

void lock (int process, int lvar) {     // process is 0 or 1
int other = 1 – process;
interested[process] = TRUE;
turn = process;
while (turn == process && interested[other] == TRUE) {} ;

} 
// Post: turn != process or interested[other] == FALSE

void unlock (int process, int lvar) {
interested[process] = FALSE;

}
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No Race
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interested[0] = TRUE;  
turn = 0;
while (turn == 0 && interested[1] == TRUE) 
{} ;

Since interested[1] is FALSE,
Thread 0 enters the critical section

interested[0] = FALSE;  

Thread 0

Since turn is 1 and interested[0] is TRUE, 
Thread 1 waits in the loop until Thread 0 

releases the lock

Now Thread 1 exits the loop and can 
acquire the lock

Thread 1

interested[1] = TRUE;  
turn = 1;
while (turn == 1 && interested[0] == TRUE) 
{} ;

Time •
•
•

No Synchronization 
Problem
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With Race
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interested[0] = TRUE;  
turn = 0;

while (turn == 0 && interested[1] == TRUE) 
{} ;

Although interested[1] is TRUE, turn is 1,
Hence, Thread 0 enters the critical section

interested[0] = FALSE;  

Thread 0

Since turn is 1 and interested[0] is TRUE, 
Thread 1 waits in the loop until Thread 0 

releases the lock

Now Thread 1 exits the loop and can 
acquire the lock

Thread 1
interested[1] = TRUE; 

turn = 1;
while (turn == 1 && interested[0] == TRUE) 
{} ;

Time

•
•
•

No Synchronization 
Problem
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Traditional Parallel Programming 
Models
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Message Passing Model
 In message passing, parallel tasks have their own local memories

 One task cannot access another task’s memory

 Hence, to communicate data they have to rely on explicit messages
sent to each other

 This is similar to the abstraction of processes which do not share an
address space

 Message Passing Interface (MPI) programs are the best fit with the
message passing programming model

29© Carnegie Mellon University in Qatar



Message Passing Model
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Message Passing Example

for (i=0; i<8; i++)
a[i] = b[i] + c[i];

sum = 0;
for (i=0; i<8; i++)

if (a[i] > 0)
sum = sum + a[i];

Print sum;

Sequential

Parallel

id = getpid(); 
local_iter = 4;
start_iter = id * local_iter;  
end_iter = start_iter + local_iter;

if (id == 0)
send_msg (P1, b[4..7], c[4..7]);

else 
recv_msg (P0, b[4..7], c[4..7]);

for (i=start_iter; i<end_iter; i++)
a[i] = b[i] + c[i];

local_sum = 0;
for (i=start_iter; i<end_iter; i++)

if (a[i] > 0)
local_sum = local_sum + a[i];

if (id == 0) {
recv_msg (P1, &local_sum1);
sum = local_sum + local_sum1;
Print sum;

}
else 

send_msg (P0, local_sum);

No Mutual Exclusion is 
Required!
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Shared Memory Vs. Message Passing

 Comparison between shared memory and message passing
programming models:
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SPMD and MPMD
 When we run multiple processes with message-passing, there are

further categorizations regarding how many different programs are
cooperating in parallel execution

 We distinguish between two models:

1. Single Program Multiple Data (SPMD) model

2. Multiple Programs Multiple Data (MPMP) model
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SPMD
 In the SPMD model, there is only one program and each process

uses the same executable working on different sets of data
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MPMD
 The MPMD model uses different programs for different processes,

but the processes collaborate to solve the same problem

 MPMD has two styles, the master/worker and the coupled analysis

a.out

Node 1 Node 2 Node 3

b.out a.out

Node 1

b.out

Node 2

c.out

Node 3

1. MPMD: Master/Slave 2. MPMD: Coupled Analysis

a.out= Structural Analysis, 
b.out = fluid analysis and 
c.out = thermal analysis

Example
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An Example
A Sequential Program

1. Read array a() from the input file
2. Set is=1 and ie=6  //is = index start and ie = index end
3. Process from a(is) to a(ie)
4. Write array a() to the output file

a

a

a

1       2     3     4    5     6
is ie

 Colored shapes indicate the initial 
values of the elements

 Black shapes indicate the values 
after they are processed
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An Example
Process 0

1. Read array a() from the 
input file

2. Get my rank
3. If rank==0 then 

is=1, ie=2
If rank==1 then 
is=3, ie=4
If rank==2 then 
is=5, ie=6

4. Process from a(is) to 
a(ie)

5. Gather the results to 
process 0

6. If rank==0 then write 
array a() to the output 
file

a

a

a

1       2     3     4    5     6
is ie

Process 1
1. Read array a() from the 

input file
2. Get my rank
3. If rank==0 then 

is=1, ie=2
If rank==1 then 
is=3, ie=4
If rank==2 then 
is=5, ie=6

4. Process from a(is) to 
a(ie)

5. Gather the results to 
process 0

6. If rank==0 then write 
array a() to the output 
file

a

a

1       2     3     4    5     6
is ie

Process 2
1. Read array a() from the 

input file
2. Get my rank
3. If rank==0 then 

is=1, ie=2
If rank==1 then 
is=3, ie=4
If rank==2 then 
is=5, ie=6

4. Process from a(is) to 
a(ie)

5. Gather the results to 
process 0

6. If rank==0 then write 
array a() to the output 
file

a

a

1       2     3     4    5     6
is ie
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Concluding Remarks
 To summarize, keep the following 3 points in mind:

 The purpose of parallelization is to reduce the time spent
for computation

 Ideally, the parallel program is p times faster than the sequential
program, where p is the number of processes involved in the parallel
execution, but this is not always achievable

 Message-passing is the tool to consolidate what parallelization has
separated. It should not be regarded as the parallelization itself

39© Carnegie Mellon University in Qatar



Next Class

Discussion on Programming Models

Why 
parallelism?

Parallel 
computer 
architectures

Traditional 
models of 
parallel 
programming

Examples of 
parallel 
processing

Message 
Passing 
Interface (MPI)

MapReduce

Pregel, 
Dryad, and 
GraphLab

© Carnegie Mellon University in Qatar 40


