Cloud Computing
CS15-319

Programming Models- Part |
Lecture 4, Jan 25, 2012

Mad F. Sakr and M ohammad Hammoud

Carnegie Mellon Qatar

Today...

= Last 3 sessions
= Administrivia and Introduction to Cloud Computing
= [ntroduction to Cloud Computing and Cloud Software Stack
= Course Project and Amazon AWS

= Today’s session
= Programming Models — Part |

= Announcement:
* Project update is due today

pmd 9d s gloa g0 lminaly,
Carnegie Mellon Qatar

© Carnegie Mellon University in Qatar

Objectives

Discussion on Programming Models

Parallel

computer
Why architectures
parallelism?

A

© Carnegie Mellon University in Qatar

Traditional
models of
parallel
programming

Examples of
parallel
processing

Pregel,
Dryad, and
MapReduce GraphLab
Message
Passing

Interface (MPI)

A= 9d s glia 0.4 l=inaly,
Carnegie Mellon Qatar

Amdahl’'s Law

= We parallelize our programs in order to run them faster
= How much faster will a parallel program run?

= Suppose that the sequential execution of a program takes T, time units
and the parallel execution on p processors takes T, time units

= Suppose that out of the entire execution of the program, s fraction of it is
not parallelizable while 1-s fraction is parallelizable

* Then the speedup (Amdahl’s formula):

- T 1

= — = =
Tp (Tl XS+T1 X TS) S %

i 9 glea s l=minaly
Carnegie Mellon Qatar
© Carnegie Mellon University in Qatar

Amdahl’'s Law: An Example

= Suppose that 80% of you program can be parallelized and that you
use 4 processors to run your parallel version of the program

» The speedup you can get according to Amdahl is:

1 1 .
— = = 2.5times
s+$ 0.2+¥

= Although you use 4 processors you cannot get a speedup more than
2.5 times (or 40% of the serial running time)

i 9 yglua g0 l=minaly,

Carnegie Mellon Qatar

© Carnegie Mellon University in Qatar

Real Vs. Actual Cases

= Amdahl’'s argument is too simplified to be applied to real cases

= When we run a parallel program, there are a communication
overhead and a workload imbalance among processes in general

Serial

=
I
o
-
e
-
-
-
-
-
-
-

Parallel 1 20 | 20
Process 1

Process 2

Process 3

Cannot be parallelized

Process 4 Can be parallelized

1. Parallel Speed-up: An Ideal Case

© Carnegie Mellon University in Qatar

Serial

80

1
Parallel !

20 ' 20 .

Process 1

Process 2

Cannot be parallelized

Process 3

! Can be parallelized

E Communication overhead

Process 4

----> Load Unbalance

2. Parallel Speed-up: An Actual Case

Guidelines

= [n order to efficiently benefit from parallelization, we
ought to follow these guidelines:

1. Maximize the fraction of our program that can be parallelized
2. Balance the workload of parallel processes

3. Minimize the time spent for communication

A= 9d s glia 0.4 l=inaly,
Carnegie Mellon Qatar

© Carnegie Mellon University in Qatar

Objectives

Discussion on Programming Models

Parallel
computer
Why architectures

parallelism?

© Carnegie Mellon University in Qatar

Traditional
models of
parallel
programming

Examples of
parallel
processing

Pregel,
Dryad, and
MapReduce GraphLab
Message
Passing

Interface (MPI)

A= 9d s glia 0.4 l=inaly,
Carnegie Mellon Qatar

Parallel Computer Architectures

Parallel Computer Architectures

Multi-Chip Single-Chip
Multiprocessors Multiprocessors

pmd 9d s gloa g0 lminaly,
Carnegie Mellon Qatar

© Carnegie Mellon University in Qatar

Multi-Chip Multiprocessors

= We can categorize the architecture of multi-chip multiprocessor
computers in terms of two aspects:

* Whether the memory is physically centralized or distributed
= Whether or not the address space is shared

Centralized

Distributed

© Carnegie Mellon University in Qatar

_ Address Space

Shared Individual

SMP (Symmetric Multiprocessor)/UMA N/A
(Uniform Memory Access) Architecture

Distributed Shared Memory (DSM)/NUMA MPP (Massively Parallel

(Non-Uniform Memory Access) Processors)/UMA
Architecture Architecture
i §d s glua g l=minnaln.

Carnegie Mellon Qatar

10

Symmetric Multiprocessors

= A system with Symmetric Multiprocessors (SMP) architecture uses a
shared memory that can be accessed equally from all processors

Processor Processor Processor Processor

Bus or Crossbar Switch

= Usually, a single OS controls the SMP system

© Carnegie Mellon University in Qatar

11

Massively Parallel Processors

= A system with a Massively Parallel Processors (MPP) architecture
consists of nodes with each having its own processor, memory and
I/O subsystem

Interconnection Network

Processor Processor Processor Processor

= Typically, an independent OS runs at each node

© Carnegie Mellon University in Qatar 12

Distributed Shared Memory

A Distributed Shared Memory (DSM) system is typically built on a
similar hardware model as MPP

= DSM provides a shared address space to applications using a
hardware/software directory-based coherence protocol

= The memory latency varies according to whether the memory is
accessed directly (a local access) or through the interconnect
(a remote access) (hence, NUMA)

= Asin a SMP system, typically a single OS controls a DSM system

© Carnegie Mellon University in Qatar 153

Parallel Computer Architectures

Parallel Computer Architectures

Multi-Chip Single-Chip
Multiprocessors Multiprocessors

A

pmd 9d s gloa g0 lminaly,
Carnegie Mellon Qatar

© Carnegie Mellon University in Qatar 14

Moore's Law

= As chip manufacturing technology improves, transistors are getting smaller
and smaller and it is possible to put more of them on a chip

= This empirical observation is often called Moore’'s Law (# of transistors
doubles every 18 to 24 months)

= An obvious guestion is: “What do we do with all these transistors”?

Option 2:
Add More
™ Processors
((Cores) to
=N = This option is more serious

= Reduces complexity and power consumption as well as
improves performance

Option 1:
Add More
Cache to

the Chip

© Carnegie Mellon University in.Qatar 15

Chip Multiprocessors

= The outcome is a single-chip multiprocessor referred to as Chip

Multiprocessor (CMP)

Imirgraied Memoey rml}r:..'!-r_r B THIE L

CMP is currently considered the architecture of choice

Cores in a CMP might be coupled either tightly or loosely

shared memory inter-core

Cores may or may not share caches
= Cores may implement a message passing or a

communication method

= Common CMP interconnects (referred to as Network-on-Chips or NoCs)

include bus, ring, 2D mesh, and crossbar

L2 § Data

L2 5 Tag

Dir

CMPs could be homogeneous or heterogeneous:

Homogeneous CMPs include only identical cores
Heterogeneous CMPs have cores which are not identical

© Carnegie Mellon University in Qatar

16

Objectives

Discussion on Programming Models

Parallel

computer
Why architectures
parallelism?

© Carnegie Mellon University in Qatar

Traditional
models of
parallel
programming

A

Examples of
parallel
processing

Pregel,
Dryad, and
MapReduce GraphLab
Message
Passing

Interface (MPI)

A= 9d s glia 0.4 l=inaly,
Carnegie Mellon Qatar

17

Models of Parallel Programming

= What is a parallel programming model?

= A programming model is an abstraction provided by the hardware
to programmers

= |t determines how easily programmers can specify their algorithms into
parallel unit of computations (i.e., tasks) that the hardware understands

= |t determines how efficiently parallel tasks can be executed on the hardware

= Main Goal: utilize all the processors of the underlying architecture

(e.g., SMP, MPP, CMP) and minimize the elapsed time of
your program

ki 0y glea g0 lmialy
Carnegie Mellon Qatar

© Carnegie Mellon University in Qatar 18

Traditional Parallel Programming
Models

Parallel Programming Models

Shared Memory

Carnegie Mellon Qatar

© Carnegie Mellon University in Qatar 19

Shared Memory Model

= |n the shared memory programming model, the abstraction is that
parallel tasks can access any location of the memory

= Parallel tasks can communicate through reading and writing
common memory locations

= This is similar to threads from a single process which share a single
address space

= Multi-threaded programs (e.g., OpenMP programs) are the best fit
with shared memory programming model

ki 0d pglua 0 yl=inaly.
Carnegie Mellon Qatar

© Carnegie Mellon University in Qatar 20

Shared Memory Model

Process

Process

! I
“ “
! [
! I
! [
H [
I) i
I O 1
I © !
I o H
i n i
H ") I
1 (7] 1
“ S “
I o) I

g 2 m

= = I

i !

g S !

= P I

= i N _

= H
“ “
! I
! I
! [
! I
! I
! [
! [
! I
! I
! [
] £ I
I o H
i i !
Wl —>

o

C

1

=

c i

=

Q |

o |

£ i

n |

_o

S

| W -

L @©

(o

I 1l

N

Carnegie Mellon Qatar

21

© Carnegie Mellon University in Qatar

Shared Memory Example

begin parallel // spawn a child thread
private int start iter, end iter, 1i;
shared int local iter=4, sum=0;

shared double sum=0.0, all]l, bll, cl];
shared lock type mylock;

. . . start iter = getid() * local iter;
for (i=0; 1i<8; i++) — \ - .
. . . end i1ter = start iter + local iter;
ali] = b[i] + cl[i]; - L = . —
for (i=start iter; i1<end iter; i++)
sum = 0; , b =) —
for (i=0; i<8; i++) . alil = bli] + clil;
if (a[i] > 0) arrier;
. for (i=start iter; i<end iter; i++)
Print sum;) —
if aJJJ—SLJLL-L

=~q

s lock(mylock), ~
(sum = sum + a[i]

} ___________

barrier; // necessary

Sequential

\

end parallel // kill the child thread
Print sum;

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
:
' 1
sum = sum + ali]; |
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

U Parallel
© Carnegie Mellon University in Qatar

Why Locks?

= Unfortunately, threads in a shared memory model need to synchronize
= This is usually achieved through mutual exclusion

= Mutual exclusion requires that when there are multiple threads, only one
thread is allowed to write to a shared memory location (or the critical
section) at any time

= How to guarantee mutual exclusion in a critical section?
= Typically, a lock can be implemented

//In a high level language In machine language, it looks like this:
void _lock (int *lockvar) {

wh)

*]1
}
void

*lockvar = 0; unlock: st &lockvar, #0
} ret

© Carnegie Mellon University in Qatar

The Synchronization Problem

= | et us check if this works:

Thread O Thread 1
Time lock: 1d R1l, &lockvar
bnz R1l, lock <«----------= > lock: 1d R1l, &lockvar
sti &lockvar, #1 bnz R1l, lock
Sl sti &lockvar, #1
v A "

Both will enter the
critical section

= The execution of Id, bnz, and sti is not atomic (or indivisible)
= Several threads may be executing them at the same time

= This allows several threads to enter the critical section simultaneously

Carnegie Mellon Qatar
© Carnegie Mellon University in Qatar 24

The Peterson’s Algorithm

= To solve this problem, let us consider a software solution referred to
as the Peterson’s Algorithm [Tanenbaum, 1992]

int turn;
int interested[n]; // initialized to O

void lock (int process, int lvar) { // process is 0 or 1
int other = 1 - process;
interested[process] = TRUE;

turn = process;
while (turn == process && interested[other] == TRUE) {} ;

}

// Post: turn != process or interested[other] == FALSE

void unlock (int process, int 1lvar) {
interested[process] = FALSE;

}

pmd 9d s gloa g0 lminaly,
Carnegie Mellon Qatar

© Carnegie Mellon University in Qatar

NOo Race

Thread 0O

interested[0] =
turn 0;

while (turn ==

{} :

0

TRUE;

&& interested[l] == TRUE)

[

Since interested[1] is FALSE,
Thread 0 enters the critical section

J

Time
[]

interested|[0]

© Carnegie Mellon University in Qatar

interested|[1]
turn
while (turn ==

Thread 1

TRUE;

1;

1l && interested[0] == TRUE)

{} :

[Since turn is 1 and interested[0] is TRUE,
Thread 1 waits in the loop until Thread 0O

L releases the lock

-
Now Thread 1 exits the loop and can

acquire the lock

No Synchronization

Problem

26

With Race

Thread 0
interested[0] = TRUE;
turn = 0;
while (turn == 0 && interested[l] == TRUE)
{}
Although interested[1] is TRUE, turnis 1,
- Hence, Thread O enters the critical section
ime

interested[0] = FALSE; >

\

Thread 1
interested[1l] = TRUE;
turn = 1;
while (turn == 1 && interested[0] == TRUE)
{} :

Since turn is 1 and interested[0] is TRUE,
Thread 1 waits in the loop until Thread 0
releases the lock

Now Thread 1 exits the loop and can
acquire the lock

No Synchronization

Problem

© Carnegie Mellon University in Qatar

27

Traditional Parallel Programming
Models

Parallel Programming Models

Message Passing

P g slea g0 Il
Carnegie Mellon Qatar
© Carnegie Mellon University in Qatar 28

Message Passing Model

* |n message passing, parallel tasks have their own local memories
= One task cannot access another task’s memory

= Hence, to communicate data they have to rely on explicit messages
sent to each other

= This is similar to the abstraction of processes which do not share an
address space

= Message Passing Interface (MPI) programs are the best fit with the
message passing programming model

© Carnegie Mellon University in Qatar 29

Node 4

Node 3

-1 Data transmission over the Network

Node 2

Process OiProcess 1 Process 2 Process 3
Node 1

Single Thread

Message Passing Model

Serial
Parallel

S
P

Process

i 0d yglia g1 l=ialy

Carnegie Mellon Qatar

30

© Carnegie Mellon University in Qatar

Message Passing Example

for (i=0; 1<8;

sum = 0;

for (i=0; 1<8;
(ali

if 1] > 0)

Print sum;

ali]l = bl[i] + cl[i];

sum = sum + alil;

Sequential

© Carnegie Mellon University in Qatar

\J

id = getpid() ;

local iter = 4;

start _iter = id * local iter;

end iter = start iter + local iter;

if (id == 0)
send msg (Pl, b[4..7], cl4..7]1);
else

re

for
al

localles ”

for (i=start iter; i<end iter; 1i++)
if (al[i]l > 0)
local sum = local sum + alil];
if (id == 0) {
recv_msg (Pl, &local suml);
sum = local sum + local suml;
Print sum;
}
else
send msg (PO, local sum);

Parallel

31

Shared Memory Vs. Message Passing

= Comparison between shared memory and message passing
programming models:

Shared Memory Message Passing
Communication Implicit (via loads/stores) Explicit Messages
Synchronization Explicit Implicit (Via Messages)
Hardware Support Typically Required None
Development Effort Lower Higher
Tuning Effort Higher Lower

© Carnegie Mellon University in Qatar

Objectives

Discussion on Programming Models

Traditional

models of
Parallel parallel
computer programming

Why architectures
parallelism?

© Carnegie Mellon University in Qatar

Examples of
parallel
processing

A

Pregel,
Dryad, and
MapReduce GraphLab
Message
Passing
Interface (MPI)
A 0y sla g0 Il
Carnegie Mellon Qatar

39

SPMD and MPMD

= When we run multiple processes with message-passing, there are

further categorizations regarding how many different programs are
cooperating in parallel execution

= We distinguish between two models:

1. Single Program Multiple Data (SPMD) model

2. Multiple Programs Multiple Data (MPMP) model

ki 0y glea g0 lmialy
Carnegie Mellon Qatar

34

© Carnegie Mellon University in Qatar

SPMD

= |n the SPMD model, there is only one program and each process
uses the same executable working on different sets of data

e

2
2

2
2

Node 1 Node 2 Node 3 i 0y gl 00 l=minaly
Carnegie Mellon Qatar

© Carnegie Mellon University in Qatar 35

MPMD

= The MPMD model uses different programs for different processes,
but the processes collaborate to solve the same problem

= MPMD has two styles, the master/worker and the coupled analysis

b.out = fluid analysis and
c.out = thermal analysis

i)

Example

Nodel Node2 Node3 : Nodel Node 2 Node 3

1. MPMD: Master/Slave | i | 2. MPMD: Coupled Analysis

© Carnegie Mellon University in Qatar 36

An Example

A Sequential Program

Read array a() from the input file

Set is=1 and ie=6 //is = index start and ie = index end
Process from a(is) to a(ie)

Write array a() to the output file

B W N R

is ie
» Colored shapes indicate the initial

. 1 2 3 4 5 6
— —~OO0OAADOD
values of the elements

"OO0OAADODO = Black shapes indicate the values

after they are processed
a
— FK-O0AAOQDO

© Carnegie Mellon University in Qatar

37

An Example

Process 0
1. Read array af()
input file
2. Get my rank
3. If rank==0 then

from the

is=1l, ie=2
If rank==1 then
is=3, ie=4
If rank==2 then
is=5, ie=6
4. Process from a(is) to
a(ie)

5. Gather the results to
process 0

6. If rank==0 then write
array a() to the output

Process 1
1. Read array af()
input file
2. Get my rank
3. If rank==0 then

from the

is=1l, ie=2
If rank==1 then
is=3, ie=4
If rank==2 then
is=5, ie=6
4. Process from a(is) to
a(ie)

5. Gather the results to
process 0

6. If rank==0 then write
array a() to the output
file

Process 2
Read array a()
input file
Get my rank
If rank==0 then

from the

is=1l, ie=2

If rank==1 then

is=3, ie=4

If rank==2 then

is=5, ie=6

Process from a(is) to
a(ie)

Gather the results to
process 0

If rank==0 then write
array a() to the output
file

a T 2 3 4 5 E
T F=00AADD
"O0AADD

v v Vv ¥

©C

Concluding Remarks

= To summarize, keep the following 3 points in mind:

= The purpose of parallelization is to reduce the time spent
for computation

» |deally, the parallel program is p times faster than the sequential
program, where p is the number of processes involved in the parallel
execution, but this is not always achievable

= Message-passing is the tool to consolidate what parallelization has
separated. It should not be regarded as the parallelization itself

ki 0y glea g0 lmialy
Carnegie Mellon Qatar

© Carnegie Mellon University in Qatar 39

Next Class

Discussion on Programming Models

Parallel

computer
Why architectures
parallelism?

© Carnegie Mellon University in Qatar

Traditional
models of
parallel
programming

Pregel,
Dryad, and
mTTTNS MapReduce GraphLab
i N
L \
,' Message \‘
[| Passing 1
Examples of \ Interface (MPI)
parallel _ AN S
processing Seoan-’

A= 9d s glia 0.4 l=inaly,
Carnegie Mellon Qatar

40

