
15-122: Principles of Imperative Computation, Spring 2024

Written Homework 12

Due on Gradescope: Monday 15th April, 2024 by 9pm

Name:

Andrew ID:

Section:

This written homework provides practice with C features such as strings and casting, and
with the C0VM.

Preparing your Submission You can prepare your submission with any PDF editor that
you like. Here are a few that prior-semester students recommended:

• Kami, Adobe Acrobat Online, or DocHub, some web-based PDF editors that work
from anywhere.

• Acrobat Pro, installed on all non-CS cluster machines, works on many platforms.
• iAnnotate works on any iOS and Android mobile device.

There are many more — use whatever works best for you. If you’d rather not edit a PDF,
you can always print this homework, write your answers neatly by hand, and scan it into
a PDF file — we don’t recommend this option, though.

Please do not add, remove or reorder pages.

Caution Recent versions of Preview on Mac are buggy: annotations get occasionally
deleted for no reason. Do not use Preview as a PDF editor.

Submitting your Work Once you are done, submit this assignment on Gradescope. Al-
ways check it was correctly uploaded. You have unlimited submissions.

Question: 1 2 3 4 Total

Points: 4.5 5 2 3.5 15

Score:

https://www.gradescope.com/courses/697481
https://www.kamiapp.com/
https://www.adobe.com/acrobat/online.html
https://dochub.com/
https://www.cmu.edu/computing/software/all/
https://www.iannotate.com/
https://www.gradescope.com/courses/697481

15-122 Written Homework 12 Page 1 of 13

1. C0VM

Consider the following C0 code that populates a structure with values.

typedef struct gap_buffer gapbuf;
struct gap_buffer {

char[] buffer; /* \length(buffer) == limit */
int limit; /* limit > 0 */
int gap_start; /* 0 <= gap_start */
int gap_end; /* gap_start <= gap_end <= limit */

};

int main() {
gapbuf* gb = alloc(gapbuf);
gb->buffer = alloc_array(char, 65536);
gb->limit = 65536;
gb->gap_start = 48112;
gb->gap_end = gb->gap_start;
return 1;

}

1.10.5pts Fill in the missing instructions (on the next page) in the following bytecode that
corresponds to the above C0 code. Fill in both the hex opcodes and the instruc-
tion name and its argument(s) in decimal. Be careful, the answers may or may
not match the bytecode output generated by compiling the C0 code directly.

1 C0 C0 FF EE # magic number

2 00 17 # version 11, arch = 1 (64 bits)

3

4 00 02 # int pool count

5 # int pool

6 00 01 00 00

7 00 00 BB F0

8

9 00 00 # string pool total size

10 # string pool

11

12 00 01 # function count

13 # function_pool

14

(bytecode continues on next page)

© Carnegie Mellon University 2024

15-122 Written Homework 12 Page 2 of 13

(continued from previous page)

15 #<main>

16 00 # number of arguments = 0

17 01 # number of local variables = 1

18 00 2B # code length = 43 bytes

19 BB 18 # new 24 # alloc(gapbuf)

20 # # gb = alloc(gapbuf);

21 15 00 # vload 0 # gb

22 62 00 # aaddf 0 # &gb->buffer

23 # # 65536

24 # # alloc_array(char, 65536)

25 4F # amstore # gb->buffer = alloc_array(char, 65536);

26 15 00 # vload 0 # gb

27 62 08 # aaddf 8 # &gb->limit

28 # # 65536

29 4E # imstore # gb->limit = 65536;

30 15 00 # vload 0 # gb

31 62 0C # aaddf 12 # &gb->gap_start

32 13 00 01 # ildc 1 # 48112

33 4E # imstore # gb->gap_start = 48112;

34 15 00 # vload 0 # gb

35 62 10 # aaddf 16 # &gb->gap_end

36 15 00 # vload 0 # gb

37 # # &gb->gap_start

38 2E # imload # gb->gap_start

39 4E # imstore # gb->gap_end = gb->gap_start;

40 10 01 # bipush 1 # 1

41 B0 # return #

42

43 00 00 # native count

44 # native pool

© Carnegie Mellon University 2024

15-122 Written Homework 12 Page 3 of 13

1.21pt After execution reaches line 21 in the byte code, there is only one value on the
operand stack; assume it is the pointer 0xC0.
You will now trace the execution forward and determine the four operand stack
states after each of lines 22–25 is executed. Write pointers in hexadecimal and
numbers in decimal. The stack grows upward. Assume that alloc_array re-
turns 0x80. Lines of code you had to fill are drawn as “_______”.
(You may not need all the provided spaces.)

Fill in the contents of the stack immediately before and after each of the following
lines is executed:

line 22
aaddf 0

0xC0

(rest of the stack)

line 23

(rest of the stack)

line 24

(rest of the stack)

line 25
amstore

(rest of the stack) (rest of the stack)

© Carnegie Mellon University 2024

15-122 Written Homework 12 Page 4 of 13

1.32pts The following bytecode file was generated by the C0 compiler. Some comments
may have been blanked out or deleted, but all instructions are untouched. Write
a C0 program that will generate this bytecode file. You do not have to fill in the
blanked out comments, but feel free to do so if you find it useful.
(Note that the bytecode continues on the following page.)

1 C0 C0 FF EE # magic number
2 00 15 # version 10, arch = 1 (64 bits)
3

4 00 00 # int pool count
5 # int pool
6

7 00 11 # string pool total size
8 # string pool
9 48 61 70 70 79 20 43 61 72 6E 69 76 61 6C 21 0A 00

10

11 00 02 # function count
12 # function_pool
13

14 #<main>
15 00 # number of arguments = 0
16 00 # number of local variables = 0
17 00 11 # code length = 17 bytes
18 14 00 00 # aldc 0 #

19 B7 00 00 # invokenative 0 #

20 57 # pop # (ignore result)
21 10 00 # bipush 0 #

22 10 01 # bipush 1 #

23 10 0A # bipush 10 #

24 B8 00 01 # invokestatic 1 #

25 B0 # return #
26

27 #<g>
28 03 # number of arguments = 3
29 03 # number of local variables = 3
30 00 30 # code length = 48 bytes
31 15 02 # vload 2 #

32 10 00 # bipush 0 #

33 9F 00 06 # if_cmpeq +6 #

34 A7 00 09 # goto +9 #

35 15 00 # vload 0 #

36 B0 # return #
37 A7 00 03 # goto +3 #

38 15 02 # vload 2 #

39 10 01 # bipush 1 #

40 9F 00 06 # if_cmpeq +6 #

41 A7 00 09 # goto +9 #

© Carnegie Mellon University 2024

15-122 Written Homework 12 Page 5 of 13

42 15 01 # vload 1 #

43 B0 # return #
44 A7 00 03 # goto +3 #

45 15 01 # vload 1 #

46 15 00 # vload 0 #

47 15 01 # vload 1 #

48 60 # iadd #

49 15 02 # vload 2 #

50 10 01 # bipush 1 #

51 64 # isub #

52 B8 00 01 # invokestatic 1 #

53 B0 # return #
54

55 00 01 # native count
56 # native pool
57 00 01 00 06 # print

© Carnegie Mellon University 2024

15-122 Written Homework 12 Page 6 of 13

1.41pt This question has to do with the function g in the bytecode given in part (3)
above.
When execution reaches the instruction on line 52, there are three values on the
operand stack, listed below with the topmost being at the top of the stack.
You will now trace the execution backward and determine the four operand stack
states before each of lines 48–51 is executed. Write your numbers in hexadecimal.
The stack grows upward. (You may not need all the provided spaces.)

Fill in the contents of the stack immediately before and after each of the following
lines is executed:

line 48
iadd

(rest of the stack)

line 49
vload 2

(rest of the stack)

line 50
bipush 1

(rest of the stack)

line 51
isub

(rest of the stack)

0x9

0x15

0xD

(rest of the stack)

© Carnegie Mellon University 2024

15-122 Written Homework 12 Page 7 of 13

2. Graph Representation

2.11pt Show the adjacency matrix that represents the graph drawn below. Indicate the
presence of an edge with ’X’; leave the cell blank when there is no edge.

© Carnegie Mellon University 2024

15-122 Written Homework 12 Page 8 of 13

2.21.5pts Recall the adjacency list representation of a graph from class:

typedef unsigned int vertex;
typedef struct adjlist_node adjlist;
struct adjlist_node {

vertex vert;
adjlist *next;

};
typedef struct graph_header graph;
typedef struct neighbor_header neighbors;

struct graph_header {
unsigned int size;
adjlist **adj;

};
struct neighbor_header {
adjlist *next_neighbor;

};

Extend the graph interface with a library function graph_countneighbors(G,v)
that returns the number of edges at vertex v of graph G. Be sure to include
appropriate REQUIRES and ENSURES contracts. You may call any functions given
in the code in class posted on our website for the lecture on representing graphs.
Your solution should be as efficient as possible, without making any changes to
the definition of any data structure used in the graph representation.

unsigned int graph_countneighbors(graph* G, vertex v) {

}

2.30.5pts Give the worst-case asymptotic complexity of your function for a graph of v ver-
tices and e edges, as a function of v and e.

O()

© Carnegie Mellon University 2024

15-122 Written Homework 12 Page 9 of 13

2.41.5pts Here is a subset of the interface to the graph library in graph.h (some contracts
have been omitted):

typedef unsigned int vertex;
typedef struct graph_header *graph_t;

graph_t graph_new(unsigned int numvert); // New graph with numvert vertices
void graph_free(graph_t G);
unsigned int graph_size(graph_t G); // Number of vertices in the graph

bool graph_hasedge(graph_t G, vertex v, vertex w);
//@requires v < graph_size(G) && w < graph_size(G);

void graph_addedge(graph_t G, vertex v, vertex w); // Edge can’t be in graph!
//@requires v < graph_size(G) && w < graph_size(G);
//@requires v != w && !graph_hasedge(G, v, w);

Write another function to count the edges at a vertex. This must be a client func-
tion, that is, it may only use the types and functions listed above — in particular
the function graph_get_neighbors is not available. You may use the fact that
vertex is an integer type, and that it is the same type returned by graph_size.
Be sure to include appropriate REQUIRES and ENSURES contracts.

unsigned int countneighbors(graph_t G, vertex v) {

}

2.50.5pts Give the worst-case asymptotic complexity of your function for a graph of v ver-
tices and e edges, as a function of v and e. For this calculation, you may assume
the adjacency list implementation.

O()

© Carnegie Mellon University 2024

15-122 Written Homework 12 Page 10 of 13

3. Graph Traversals

3.11pt Consider the graph:

Using recursive depth-first traversal, list the vertices in the order they are visited
as we search from vertex J to vertex G. When we visit a vertex, we explore its
outgoing edges in alphabetical order. Do not list a vertex again if you backtrack
to it.

J,

List the vertices of the path found from J to G by the search.

Using a breadth-first traversal, list the vertices in the order that they are visited
as we search from vertex J to vertex G. When we visit a vertex, we explore its
outgoing edges in alphabetical order.

J,

List the vertices of the path found from J to G by the search.

3.21pt In an undirected graph with v vertices, what is the maximum possible number
of edges? (This kind of graph is called a complete graph). Express your answer in
closed form as a function of v.

A path in a graph is called a simple cycle if it lets you go from a vertex to itself
without repeating an edge or any intermediate vertex. What is the maximum
possible number of edges in a graph with v vertices that contains no simple cy-
cles?

© Carnegie Mellon University 2024

15-122 Written Homework 12 Page 11 of 13

4. Checking Paths

We can represent an n-vertex path in a graph as a stack of n vertices where each vertex
is connected by an edge to the vertex below it in the stack. For example, the 5-vertex
path 1—3—5—7—3 will be represented as a 5-element stack, with 1 at the top, then
3, then 5, then 7 and finally 3. Thus, a path can have zero or more vertices, and cycles
are permitted.

Here’s the C interface for generic stack:

typedef void *elem; // stack element
typedef void elem_free_fn(elem x); // function that frees an element

typedef struct stack_header *stack_t; // Generic stacks

bool stack_empty(stack_t S) // O(1)
/*@requires S != NULL; @*/ ;

stack_t stack_new() // O(1)
/*@ensures \result != NULL && stack_empty(\result); @*/ ;

void push(stack_t S, elem x) // O(1)
/*@requires S != NULL; @*/
/*@ensures !stack_empty(S); @*/ ;

elem pop(stack_t S) // O(1)
/*@requires S != NULL && !stack_empty(S); @*/ ;

void stack_free(stack_t S, elem_free_fn* elem_free) // O(n)
/*@requires S != NULL; @*/
/* if elem_free is NULL, then elements will not be freed */ ;

You may only use the following subset of the graph interface:

typedef unsigned int vertex;
typedef struct graph_header *graph_t;

graph_t graph_new(unsigned int numvert)
/*@ensures \result != NULL; @*/ ;
void graph_free(graph_t G) /*@requires G != NULL; @*/ ;
unsigned int graph_size(graph_t G) /*@requires G != NULL; @*/ ;

bool graph_hasedge(graph_t G, vertex v, vertex w)
/*@requires G != NULL && v < graph_size(G) && w < graph_size(G); @*/ ;

void graph_addedge(graph_t G, vertex v, vertex w)
/*@requires G != NULL && v < graph_size(G) && w < graph_size(G); @*/
/*@requires v != w && !graph_hasedge(G, v, w); @*/ ;

© Carnegie Mellon University 2024

15-122 Written Homework 12 Page 12 of 13

4.12.5pts Complete the code for the client-side function check_path(G,S) that return

• true if the stack S represents a path that is present in the graph G, and
• false if S does not represent a valid path in G.

You may use the specification function stack_of_valid_vertices(G,S) that
returns false if any element in S is not a valid vertex for graph G, and true
otherwise.
The stack S and its elements should be freed upon returning and your code
should not leak memory. Your code should be provably safe. Recall that the
stack library is generic. You may write code in any blank space.

bool check_path(graph_t G, stack_t S) {

REQUIRES(&&);

REQUIRES();

if () {

return true;
}

// Get first vertex

while () {

// Get next vertex

if () {

return ;

}

}

return ;

}

© Carnegie Mellon University 2024

15-122 Written Homework 12 Page 13 of 13

4.21pt Consider a graph G with v vertices and e edges, and a stack S contains s elements.
What is the worst-case asymptotic complexity of the call check_path(G,S) as-
suming an adjacenty list representation? What if we assume an adjacency matrix
representation instead?

Adjacency list representation: O()

Adjacency matrix representation: O()

© Carnegie Mellon University 2024

