
15-122: Principles of Imperative Computation, Spring 2024

Written Homework 11

Due on Gradescope: Monday 1st April, 2024 by 9pm

Name:

Andrew ID:

Section:

This written homework provides practice with C features such as arrays, undefined be-
haviors, and stack allocation.

Preparing your Submission You can prepare your submission with any PDF editor that
you like. Here are a few that prior-semester students recommended:

• Kami, Adobe Acrobat Online, or DocHub, some web-based PDF editors that work
from anywhere.

• Acrobat Pro, installed on all non-CS cluster machines, works on many platforms.
• iAnnotate works on any iOS and Android mobile device.

There are many more — use whatever works best for you. If you’d rather not edit a PDF,
you can always print this homework, write your answers neatly by hand, and scan it into
a PDF file — we don’t recommend this option, though.

Please do not add, remove or reorder pages.

Caution Recent versions of Preview on Mac are buggy: annotations get occasionally
deleted for no reason. Do not use Preview as a PDF editor.

Submitting your Work Once you are done, submit this assignment on Gradescope. Al-
ways check it was correctly uploaded. You have unlimited submissions.

Question: 1 2 3 4 Total

Points: 3.5 2.5 4 5 15

Score:

https://www.gradescope.com/courses/697481
https://www.kamiapp.com/
https://www.adobe.com/acrobat/online.html
https://dochub.com/
https://www.cmu.edu/computing/software/all/
https://www.iannotate.com/
https://www.gradescope.com/courses/697481

15-122 Written Homework 11 Page 1 of 11

1. Accessing Data on the Stack

In this question, we assume the usual 2’s complement implementation of unsigned
and signed char (8 bits, one byte), short (16 bits, two bytes), and int (32 bits,
four bytes). Pointers are 64 bits, eight bytes. We also assume that numbers are
represented in memory with their most significant bits at lower addresses.

During execution, the local variables of a function are stored on the system stack. In
particular, so are stack-allocated arrays and structs. Each item on the stack starts at
a unique address, but each address contains exactly one byte of data. Therefore the
value of a variable will often span multiple bytes.

Assume the function being executed contains the following lo-
cal declarations:

// a stack-allocated array
char cs[] = {’a’, ’b’, ’c’, ’d’};
// an int
int i = 0x01ABCDEF;

The compiler decides on the layout of their component bytes
onto the stack. Assume it arranged them as shown on the right
of this text: the variable cs starts at address 0xC4 which con-
tains 0x61 (the ASCII value of ’a’), the variable i starts at ad-
dress 0xC8 where it stores the 8 most significant bits of its value.

Notice that while cs and i look similar on the stack, cs is an ar-
ray — its values are read by indexing — whereas i is an integer
with value 0x01ABCDEF.

Var. Addr. Stack

· · · · · ·
0xCB EF

0xCA CD

0xC9 AB

i 0xC8 01

0xC7 64

0xC6 63

0xC5 62

cs 0xC4 61

1.11pt For the following program, draw the contents of the stack after the code shown
is executed. Assume the compiler arranges the bytes as in the previous example.
Leave any byte that does not contain program data blank.

char A[5];
A[0] = ’1’;
A[1] = ’5’;
A[2] = ’1’;
A[3] = ’2’;
A[4] = ’2’;

The ASCII value of the character ’1’ is 0x31.

What is the value of &A[1]?

Fill in the correct type
so that *x == A[3]: x = &A[3];

Var. Addr. Stack

· · · · · ·
0xBE

0xBD

0xBC

0xBB

0xBA

0xB9

A 0xB8

© Carnegie Mellon University 2024

15-122 Written Homework 11 Page 2 of 11

1.21pt Assume we are given the function

bool parse(char *x, int *p); // Returns true iff parse succeeds

which reads the string representation x of a decimal number (e.g., "15122") and
stores the corresponding integer (here 15122) at p. If x is not a decimal number
(e.g., "hello!"), it returns false — it returns true to signal a successful parse.
Now we want to implement the function test_parse which calls parse on its
input and prints whether the parse was successful or not. Before we knew about
getting the address of a variable, we would have implemented test_parse as
follows:

void test_parse(char *x) {
REQUIRES(x != NULL);
int *i = xmalloc(sizeof(int));
if (parse(x, i)) printf("Success: %d!\n", *i);
else printf("Failure.\n");
free(i);

}

In particular, we had to allocate space for the variable i so that parse had some-
where to write the result of a successful parse.
But now that we know how to get the address of a variable, we can reimple-
ment test_parse so that it does not heap-allocate i (and risk leaking memory).
Complete the following code:

void test_parse_lean(char *x) {
REQUIRES(x != NULL);
int i;

}

1.31pt Assume the string "410", which resides at address 0xA7,
is passed into test_parse_lean so that, just before the
call to parse, the contents of the stack are displayed to the
right of this text. For succinctness, we wrote the memory
address of the string "410" as 0xA7 on the stack drawing
— an actual address would span 8-bytes of stack space.

Var. Addr. Stack

x

...

0x80 0
x
A
7

0x7F 00

0x7E 00

0x7D 00

i 0x7C 00

© Carnegie Mellon University 2024

15-122 Written Homework 11 Page 3 of 11

What are the hex values of the arguments passed to
parse? Hint: recall what the values of pointer types are.

parse(,)

What are the contents of the stack when parse has
finished executing? Write all values in hex in the dia-
gram to the right of this text.

Var. Addr. Stack

x

...

0x80 0
x
A
7

0x7F

0x7E

0x7D

i 0x7C

1.40.5pts One of the dangers of using the address-of operator is that stack addresses get
reused. Consider a version of test_parse_lean that returns the address of the
parsed value.

int *test_parse_weird(char *x) {
REQUIRES(x != NULL);
int i;
// Your code from test_parse_lean goes here
return &i;

}

int main() {
int *n1 = test_parse_weird("122");
int *n2 = test_parse_weird("150");
ASSERT(*n1 != *n2); // we expect n1 and n2 to differ
return 0;

}

Since we don’t know anything about where i appears on the stack, both calls to
test_parse_weird could end up putting i at the same address (i.e., the values
would be overwritten). Answer the following questions under this assumption.

If n1 == 0xB0, the value of n2 is

The argument of ASSERT evaluates to (true or false?)

© Carnegie Mellon University 2024

15-122 Written Homework 11 Page 4 of 11

2. Undefined Behavior

C is difficult to program in because it is so permissive. Many things which are errors
in C0 are undefined in C, so the behavior can change even between runs.

Consider the following program, where we assume ints are 4 bytes long and pointers
are 8 bytes long:

1 #include <stdio.h>
2 #include <stdlib.h>
3

4 int main() {
5 int *n = malloc(2 * sizeof(int));
6 *n = 15122;
7

8 int *A;
9 *A = 6;

10

11 if (*n == 15122) printf("Yay!\n");
12 else printf("Blasphemy\n");
13

14 free(n);
15 return 0;
16 }

Assume that when the execution reaches line 7, the heap looks as follows:

The grayed out region is allocated by you on line 5 — i.e., malloc returned 0xA4.
Access to the red region is forbidden (doing so will result in a segmentation fault).
Although executing line 9 is undefined behavior, you may assume it succeeds unless
it writes to the red region.

© Carnegie Mellon University 2024

15-122 Written Homework 11 Page 5 of 11

2.11.5pts Since local variables are not automatically initialized, A could be anything. For
each of the following possible values of A, state whether the program runs nor-
mally, prints "blasphemy", or throws an error. Mark only one outcome for each
row.

A == 0xA0: ⃝ prints "Yay!" ⃝ prints "Blasphemy" ⃝ segfaults

A == 0xA4: ⃝ prints "Yay!" ⃝ prints "Blasphemy" ⃝ segfaults

A == 0xA6: ⃝ prints "Yay!" ⃝ prints "Blasphemy" ⃝ segfaults

A == 0xA8: ⃝ prints "Yay!" ⃝ prints "Blasphemy" ⃝ segfaults

A == 0xAC: ⃝ prints "Yay!" ⃝ prints "Blasphemy" ⃝ segfaults

A == 0xAE: ⃝ prints "Yay!" ⃝ prints "Blasphemy" ⃝ segfaults

For the next two task, you will need to compile this code and run it with Valgrind.
You will need to use the following compilation command:� �
gcc -g file.c� �
(without additional flags) where file.c is the name of the file where you saved this
code. Read the guide to success on How to use Valgrind on o interpret the output of
Valgrind.

2.20.5pts Valgrind will report two error messages with this code even if the program runs
correctly. What is the problem in the code that causes both error messages?

Problem:

2.30.5pts Using this error message, fix the error in file.c. Then, change line 14 to free(n+1).
What is the exact error message that Valgrind displays now? Explain your answer.

Valgrind error message:

because

Always use Valgrind!

© Carnegie Mellon University 2024

15-122 Written Homework 11 Page 6 of 11

3. Strings in C

Unlike C0, C does not have a string type. Rather, strings in C are arrays of char’s
that end in the NUL character, the character with ASCII value 0, which we write as
’\0’. They can live in three places:

1. In the DATA segment of memory. Space is automatically created for them, it is
undefined behavior to write to them (they are “read-only”), and they are auto-
matically NUL-terminated. You create them when you write string literals, such
as "functions are pointers", in your code.

2. On the heap. Space needs to be provided for them using malloc or similar, and
it needs to be freed.

3. On the stack, as stack allocated arrays. Space for them is created when entering
a function and disappears when returning from it.

As you might anticipate, strings can lead to a number of errors! The tasks in this
question will explore the ways things can go wrong.

3.11.5pts The following function writes A to res, followed by these same characters in
reverse. For example, if A is "honk!", then res will be "honk!!knoh".

1 void mirror(char *A, char *res) {
2 REQUIRES(A != NULL);
3 REQUIRES(res != NULL);
4

5 int n = strlen(A);
6 for (int i = 0; i < n; i++) {
7 res[i] = A[i];
8 res[n+i] = A[n-i-1];
9 }

10 res[2*n] = ’\0’;
11 }

Depending on what string is passed to mirror as A and what we do with our
memory, we could run into a number of common issues:

• We could read a value out of bounds or read from memory we have already
freed. These are invalid reads.

• We could write to a value out of bounds, write to memory we have already
freed, or write to read-only memory. These are invalid writes.

• We could free a value we have already freed or free a pointer we did not
allocate. These are invalid frees.

© Carnegie Mellon University 2024

15-122 Written Homework 11 Page 7 of 11

Here are some test cases using mirror. Determine whether they could result
in an invalid read, an invalid write, or an invalid free. For each one, check all
boxes that apply. If none do, check “ALL GOOD”. Remember to account for the
NUL-terminator!
When determining the effects of each statement, assume the previous ones (except the
setup code before the first call to mirror) did not run and undefined behavior does not
propagate to later function calls on the same line.
The library function strncpy(s1,s2,n) copies the first n characters of s2 into
s1.

1 int main() {

2 char A[] = "hi!";

3 char B[] = {’h’, ’i’,’!’};

4 char *C = "hi!";

5 char *D = xmalloc(sizeof(char) * 4);

6 strncpy(D, C, 4);

7 char *E = D;

8

9 char *a = xmalloc(sizeof(char) * 7);

10 char b[7];

11 char c[] = "hi";

12 char *d = "goodbye";

13 char *e = xmalloc(sizeof(char) * 12);

14

15 // Invalid Invalid Invalid ALL

16 // read write free GOOD

17 mirror(A, a);

18 mirror(B, b);

19 mirror(C, c);

20 mirror(D, d);

21 mirror(E, e);

22 mirror(A, b); free(b);

23 mirror(C, e); free(e);

24 free(d); mirror(E, c);

25 free(a); mirror(B, d);

26 free(E); mirror(D, a); free(D);

27 return 0;

28 }

© Carnegie Mellon University 2024

15-122 Written Homework 11 Page 8 of 11

3.21pt We can’t fix all of these problems, but we can eliminate some by returning the
result. Complete the code of mirror2 so that it cannot perform invalid writes.

char *mirror2(char *A) {
REQUIRES(A != NULL);

int n = strlen(A);
char *res = xcalloc(sizeof(char),);

return ;

}

3.31.5pts This version prevents invalid writes, but it introduces more possible leaks. For
each line, mark it if it allocates memory that gets leaked when the program
reaches line 22. Assume that all earlier lines ran but ignore any undefined be-
havior on them.

1 int main() {

2 char A[] = "hi!";

3 char B[] = {’h’, ’i’,’!’};

4 char *C = "hi!";

5 char *D = xmalloc(sizeof(char) * 4);

6 strncpy(D, C, 4);

7 char *E = D;

8

9 char *a, *b, *c, *d, *e;

10 // Invalid Invalid ALL

11 // read free LEAK GOOD

12 a = mirror2(A);

13 b = mirror2(B);

14 c = mirror2(C);

15 d = mirror2(D);

16 e = mirror2(E);

17 b = mirror2(A); free(b);

18 e = mirror2(C); free(d);

19 free(e); c = mirror2(E);

20 free(a); d = mirror2(B);

21 free(E); a = mirror2(D); free(D);

22 return 0;

23 }

© Carnegie Mellon University 2024

15-122 Written Homework 11 Page 9 of 11

4. Casting C Things

Since C has integers of different sizes, we often find it necessary to cast between them.
In this question, we will make the following assumptions:

• whether signed or unsigned, a char has 8 bits (one byte), a short has 16 bits
(two bytes), and an int has 32 bits (four bytes);

• signed numbers are implemented using two’s complement (or equivalently the
code was compiled with the -fwrapv flag).

4.12pts Given the declarations

int sign_int = -7;
unsigned int un_int = 40125;
signed char sign_char = -114;
unsigned char un_char = 221;

fill in the table below. In this task, fully simplify decimal values and always write
the leading zeros in the hex representation, so that an int is 8 hex digits, a short
4, and a char 2. If the result of a cast is implementation-defined, assume the
common rules seen in class but flag this issue by writing an X in column ID.

C expression Decimal value Hexadecimal ID

1. sign_int -7 0xFFFFFFF9

2. (unsigned int)sign_int

3. un_int 40125

4. (int)un_int

5. (unsigned short)un_int

6. (short)(unsigned short)un_int

7. sign_char -114

8. (int)sign_char

9. (unsigned int)(int)sign_char

10. un_char 221

11. (signed char)un_char

12. (int)(signed char)un_char

13. (unsigned int)(int)(signed char)un_char

14. (unsigned int)un_char

© Carnegie Mellon University 2024

15-122 Written Homework 11 Page 10 of 11

4.21pt An array’s address is its starting byte. The type of an array tells the compiler
how many bytes to read when accessing an element.
Consider the array A represented in memory by the shaded cell in the following
memory diagram:

What are the possible types of the elements of A? Mark all that apply.

char unsigned char short unsigned short

int unsigned int long unsigned long

int8_t int16_t int32_t int64_t

uint8_t uint16_t uint32_t uint64_t

Ananya wants to convert an array A from the previous task so that each element
has type int. For example, if A contains the characters {0x01 0xF1 0x80 0x02
0x36}, the new array should contain {0x00000001 0x000000F1 0x00000080
0x00000002 0x00000036} — it’s the same as A but each element is now an int
instead of a char.
Ananya’s friend, Grace, suggests that Ananya converts her array by defining the
following:

int *B = (int*)A;

Clearly indicate B, B+1, B+2, B+3 and B+4 in the following memory diagram.

© Carnegie Mellon University 2024

15-122 Written Homework 11 Page 11 of 11

4.31pt Grace’s approach doesn’t quite work. Help Ananya out by writing a function
that converts her array correctly. Fill in the missing types appropriately and
make all casts explicit. As you do so, recall C’s casting rules for numerical types:

• If the new type can represent the value, the value is preserved.
• If the new type can’t represent the value,

– if the new type is unsigned,

* if the new type is smaller or the same, the least significant bits are
retained.

* if the new type is bigger, the bits are sign-extended.
– if the new type is signed, the result is implementation-defined.

You may not use bitwise operators.
As earlier, if A contains the characters {0x01 0xF1 0x80 0x02 0x36}, the
new array should contain {0x00000001 0x000000F1 0x00000080 0x00000002
0x00000036}.

int *char_array_to_ints(signed char *A, size_t num_elems) {

}

4.41pt We want to convert an array of numbers of unspecified type (they could be
char’s, uint64_t’s, . . .) to an array of int’s. How to go about it? As long as we
know the size of the array elements and how to turn this many bytes to an int,
we can perform this conversion. Complete the code of the following function
that does precisely this! You will want to use the fact that sizeof(char) == 1.
Make all casts explicit.

typedef int elem2int_fn(void *e);

int *num_array_to_ints(void *A, elem2int_fn *F,
size_t elem_size, size_t num_elems) {

}

© Carnegie Mellon University 2024

