
15-122: Principles of Imperative Computation, Spring 2024

Written Homework 4

Due on Gradescope: Tuesday 6th February, 2024 by 9pm

Name:

Andrew ID:

Section:

This written homework covers big-O notation and some reasoning about searching and
sorting algorithms. You will use some of the functions from the arrayutil.c0 library
that was discussed in lecture in this assignment.

Preparing your Submission You can prepare your submission with any PDF editor that
you like. Here are a few that prior-semester students recommended:

• Kami, Adobe Acrobat Online, or DocHub, some web-based PDF editors that work
from anywhere.

• Acrobat Pro, installed on all non-CS cluster machines, works on many platforms.
• iAnnotate works on any iOS and Android mobile device.

There are many more — use whatever works best for you. If you’d rather not edit a PDF,
you can always print this homework, write your answers neatly by hand, and scan it into
a PDF file — we don’t recommend this option, though.

Please do not add, remove or reorder pages.

Caution Recent versions of Preview on Mac are buggy: annotations get occasionally
deleted for no reason. Do not use Preview as a PDF editor.

Submitting your Work Once you are done, submit this assignment on Gradescope. Al-
ways check it was correctly uploaded. You have unlimited submissions.

Question: 1 2 3 Total

Points: 4 5.5 5.5 15

Score:

https://www.gradescope.com/courses/697481
https://cs.cmu.edu/~15122/handouts/code/arrayutil.c0
https://www.kamiapp.com/
https://www.adobe.com/acrobat/online.html
https://dochub.com/
https://www.cmu.edu/computing/software/all/
https://www.iannotate.com/
https://www.gradescope.com/courses/697481

15-122 Written Homework 4 Page 1 of 8

1. Another Sort

Consider the following function that sorts the integers in an array, using swap and
is_sorted from arrayutil.c0 which you can find on the course web page.

1 void sort(int[] A, int n)
2 //@requires 0 <= n && n <= \length(A);
3 //@ensures is_sorted(A, 0, n);
4 {
5 for (int i = 0; i < n; i++)
6 //@loop_invariant 0 <= i && i <= n;
7 //@loop_invariant le_segs(A, 0, n-i, A, n-i, n);
8 //@loop_invariant is_sorted(A, __________, __________);
9 {

10 int c = 0;
11 for (int j = 0; j < n-i-1; j++)
12 //@loop_invariant 0 <= j && j <= n-i-1;
13 //@loop_invariant ge_seg(A[j], A, 0, j);
14 //@loop_invariant c > 0 || (c == 0 && is_sorted(A, 0, j));
15 {
16 if (A[j] > A[j+1]) {
17 swap(A, j, j+1); // function that swaps A[j] and A[j+1]
18 c = c + 1;
19 }
20 }
21 if (c == 0) return;
22 }
23 }

1.11pt Complete the missing loop invariant on line 8.

8 //@loop_invariant is_sorted(A, ,);

1.21pt The asymptotic complexity of this function can be computed by counting the
number of comparisons between pairs of array elements it makes. Let T (n) be
the worst-case number of such comparisons made when sort(A, n) is called.
Give a closed form expression for T (n) — a simple, non-recursive mathematical
expression that doesn’t use

∑
or similar. Then express T (n) in big-O notation in

its simplest, tightest form.

T (n) =

T (n) ∈ O()

© Carnegie Mellon University 2024

https://cs.cmu.edu/~15122/handouts/code/arrayutil.c0

15-122 Written Homework 4 Page 2 of 8

1.31pt Using big-O notation, what is the best case asymptotic complexity of this sort as
a function of n? Under what condition does the best case occur?

The best case asymptotic complexity of this sort is O().

This occurs when .

1.41pt Is the sorting function on the previous page in-place? Is it stable? Justify your
answers in one sentence.

In-place? ⃝ Yes ⃝ No, because

Stable? ⃝ Yes ⃝ No, because

2. Big-O Notation

Recall the definition for big-O:

f ∈ O(g) if there is a real constant c > 0 and some natural number n0 such that
for every n ≥ n0 we have f(n) ≤ c · g(n).

To show that f(n) ∈ O(g(n)), you need to find a specific c and an n0, assume that
n ≥ n0, and then derive f(n) ≤ cg(n) for such values of n. Let’s practice (follow the
format for big-O proofs used in class):

2.11pt Show that f(n) = 3n+ 7 ∈ O(n).

c = , n0 =

To show: (expand f , g, c and n0)

A. n ≥ by assumption

B. by

C. by

D. by

E. by

© Carnegie Mellon University 2024

15-122 Written Homework 4 Page 3 of 8

2.21.5pts Show that f(n) = 2n2 + 5n+ 1 ∈ O(n2).

c = 8.0 (given to you), n0 =

To show: (expand f , g, c and n0)

A. by

B. by

C. by

D. by

E. by

F. by

2.32pts Demonstrate graphically that 2n2 +5n+1 ∈ O(n2) by finding values for c and n0

that satisfy the definition above, where f(n) = 2n2 + 5n+ 1 and g(n) = n2. Draw
a picture to illustrate that cn2 acts as an upper bound to 2n2+5n+1 for all n ≥ n0

using your values for c and n0. Be sure to label the functions and make sure their
intersection is prominently visible.
Either hand-draw on paper or use a graphing application such as Desmos). Please
paste it in the space provided — do not insert it as a new page.

c = , n0 =

© Carnegie Mellon University 2024

https://www.desmos.com/calculator

15-122 Written Homework 4 Page 4 of 8

2.41pt Determine the asymptotic complexity of the following function using big-O no-
tation as a function of its arguments (as always, in its simplest and tightest form).

int mystery(int[] B, int x, int y)
//@requires 0 <= x && x < \length(B);
//@requires 0 <= y && y < \length(B);
{
int r = 0;
for (int i = 1; i < 42; i++) {
int j = x;

while (j > 0) {
int k = y;

while (k > 0) {
r = r + i * B[j] * B[k];
k--;

}

j = j / 2;
}

}
return r;

}

O()

Reminder: as discussed in recitation, in this class when we are dealing with loga-
rithms, we consider the “simplest form” to be the one without the base. Therefore, we
write O(log n) over big-O descriptions like O(log4 n) or O(lnn).

© Carnegie Mellon University 2024

15-122 Written Homework 4 Page 5 of 8

3. Binary Search

Consider a streamlined version of the search function we analyzed in the last written
assignment. This function returned the index of the first occurrence of x in the array
A, or -1 if x is not found. Now let’s fill in the loop body with code that implements
the binary search algorithm (on a sorted array, of course).

33 int search(int x, int[] A, int n)
34 //@requires 0 <= n && n <= \length(A);
35 //@requires is_sorted(A, 0, n);
36 /*@ensures (\result == -1 && !is_in(x, A, 0, n))
37 || (0 <= \result && \result < n
38 && A[\result] == x
39 && gt_seg(x, A, 0, \result)); @*/
40 {
41 int lo = 0;
42 int hi = n;
43

44 while (lo < hi)
45 //@loop_invariant 0 <= lo;
46 //@loop_invariant lo <= hi;
47 //@loop_invariant hi <= n;
48 //@loop_invariant gt_seg(x, A, 0, lo);
49 //@loop_invariant le_seg(x, A, hi, n);
50 {
51 if (A[lo] == x)
52 return lo;
53 int mid = lo + (hi-lo)/2;
54 if (A[mid] < x)
55 lo = mid+1;
56 else { /*@assert(A[mid] >= x); @*/
57 hi = mid;
58 }
59 }
60 //@assert lo == hi;
61

62 if (lo != n && A[lo] == x) return lo;
63 return -1;
64 }

Here is a graphical representation of the loop invariants of this function:

© Carnegie Mellon University 2024

15-122 Written Homework 4 Page 6 of 8

3.12pts Prove that, in the case that the code returns on line 52, the postcondition on lines
36–39 always evaluates to true. We’ve given the starting facts you’ll use in this
proof (you may not need all of them). Justify your answers using line numbers
or previous steps. (You may not need all the lines provided.)

When we start an arbitrary iteration of the loop, we know the following:

A. 0 <= n && n <= \length(A) by line 34 (precondition 1)

B. A[0,n) SORTED by line 35 (precondition 2)

C. lo < hi by line 44 (loop guard)

D. 0 <= lo && lo <= hi && hi <= n by lines 45–47 (LIs 1–3)

E. gt_seg(x, A, 0, lo) by line 48 (LI 4)

F. le_seg(x, A, hi, n) by line 49 (LI 5)

G.

H.

I.

J.

K.

L.

M.

© Carnegie Mellon University 2024

15-122 Written Homework 4 Page 7 of 8

3.21pt Argue that the loop has to terminate. Follow the format for termination argu-
ments described in class and in prior homework!

3.32.5pts On the next page, modify the search function above so that it uses the binary
search algorithm to return the index of the last occurrence of x in array A (as
opposed to the first occurrence) or -1 if x is not found. Think carefully about the
contracts to make sure that your array accesses are safe and that the function is
logically correct. Here’s a picture of the loop invariants you are aiming for, and
that you should express in C0 on lines 56 and 58. Study it carefully.

There are operationally correct implementations for which it is not possible to
prove that the postconditions are true. Such implementations will not get full
credit.

© Carnegie Mellon University 2024

15-122 Written Homework 4 Page 8 of 8

39 int search(int x, int[] A, int n)
40 //@requires 0 <= n && n <= \length(A);
41 //@requires is_sorted(A, 0, n);
42 /*@ensures (\result == -1 && !is_in(x, A, 0, n))
43 || (0 <= \result && \result < n
44 && A[\result] == x

46 && ()); @*/
47 {
48 int lo = 0;
49 int hi = n;

51 while (lo < hi)
52 //@loop_invariant 0 <= lo;
53 //@loop_invariant lo <= hi;
54 //@loop_invariant hi <= n;

56 //@loop_invariant ;

58 //@loop_invariant ;
59 {
60 int mid = lo + (hi-lo)/2;

62 if () lo = mid+1;

64 else { /*@assert(); @*/
65 hi = mid;
66 }
67 }
68 //@assert lo == hi;

70 if () {

72 return ;
73 }

75 return -1;
76 }

© Carnegie Mellon University 2024

