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This written homework covers more reasoning using loop invariants and assertions, and
the C0 types int and bool.

Preparing your Submission You can prepare your submission with any PDF editor that
you like. Here are a few that prior-semester students recommended:

• Kami, Adobe Acrobat Online, or DocHub, some web-based PDF editors that work
from anywhere.

• Acrobat Pro, installed on all non-CS cluster machines, works on many platforms.
• iAnnotate works on any iOS and Android mobile device.

There are many more — use whatever works best for you. If you’d rather not edit a PDF,
you can always print this homework, write your answers neatly by hand, and scan it into
a PDF file — we don’t recommend this option, though.

Please do not add, remove or reorder pages.

Caution Recent versions of Preview on Mac are buggy: annotations get occasionally
deleted for no reason. Do not use Preview as a PDF editor.

Submitting your Work Once you are done, submit this assignment on Gradescope. Al-
ways check it was correctly uploaded. You have unlimited submissions.
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1. Point-to Reasoning

When writing code, we want its correctness to be as “obvious” as possible. In this
class, the gold standard for this is whether or not it can be proven with point-to reason-
ing — we can prove it true without tracing its execution over more than one block of
code. In particular, since reasoning over multiple iterations of a loop is hard to keep
track of, we never want to do that.

In this question, you will judge some sample proofs and determine whether they are
“point-to valid”. If a proof is not, state which line is invalid and explain why. Refer
to the lecture notes for a detailed discussion of point-to reasoning.

Some things to keep in mind:

• When reasoning inside a loop, you may not draw conclusions about variable
changes over multiple iterations of this loop — only over the current iteration.

• When reasoning about an earlier loop, you should pretend the body of that loop
is unknown!

• Similarly, you should pretend the body of a function you are calling is un-
known! (. . . unless it’s a specification function.)

Here are some things you can use:

• Statements about a variable that hasn’t been changed.
• Recent Boolean expressions — in particular conditionals and loop guards.
• Statements based on contracts (such as that the loop invariants held just before

the loop guard was checked).
• Assignments within the current block of code.

Here are three examples — study them carefully! Note that the second proof does
prove the assertion! However, it uses reasoning that requires taking a “big leap” to
the last iteration of the loop. While this assertion is arguably obvious, large code that
requires this kind of reasoning frequently will not be as clearly correct.

1 int f(int a, int b)
2 //@requires 1 <= a && a < b;
3 {
4 int i = 1;
5 while (i < a)
6 //@loop_invariant i >= 1;
7 {
8 //@assert i < b; /*** Assertion 1 ***/
9 i += 1;

10 //@assert i >= 2; /*** Assertion 2 ***/
11 }
12 //@assert i == a; /*** Assertion 3 ***/
13 return i;
14 }
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Assertion 1, //@assert i < b, is supposedly supported by this point-to proof:

A. i < a by line 5
B. a < b by line 2 and a and b unchanged

Therefore we conclude that

C. i < b by math on (A) and (B)

This proof is point-to valid (the assertion is inside the loop and the proof only uses
the loop guard and a known fact about variables that are not changed in the loop).

Assertion 2, //@assert i >= 2, is supposedly supported by this point-to proof:

A. i == 1 initially by line 4
B. i += 1 at each iteration by line 9

Therefore we conclude that

C. i >= 2 by (A) and (B)

This proof is not point-to valid on step (B). This is because assertion 2 is inside the
loop and step (B) refers to how i changes over multiple iterations. Point-to reasoning
doesn’t permit drawing conclusions about variable changes over multiple iterations
of the current loop.

(This assertion can be proved by point-to reasoning: i >= 1 by the loop invariant on line 6,
i+1 can’t overflow by line 5, i = i+1 on line 9, and therefore i >= 2 by math after line 9.)

Assertion 3, //@assert i == a, is supposedly supported by this point-to proof:

A. i = 1 initially by line 4
B. i += 1 by line 9
C. i >= a by the negation of loop guard on line 5

Therefore we conclude that

D. i = a by (A–C) since i increases by 1 at each
iteration, so it become equal to a and break
the loop guard before it can exceed it

This proof is not point-to valid on step (B). This is because assertion 3 is outside
the loop but step (B) refers to i += 1 which is inside the body of the loop. Point-
to reasoning doesn’t permit peeking inside the body of an earlier loop: we should
pretend the body of the loop is unknown.

(Note that this assertion is true and this proof provides a convincing argument to support this,
but it is not a point-to proof. As written, the above program does not allow any point-to proof
of this assertion. However, simple changes in the provided contracts would make writing a
valid point-to proof for it easy.)
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1.11.5pts
1 int f(int a, int b)
2 //@requires 0 <= a && 2*a < b;
3 //@requires a <= int_max()/2;
4 {
5 int i = 0;
6 while (i < a) {
7 //@assert i < b; /*** Assertion 1 ***/
8 i += 2;
9 a += 1;

10 }
11 //@assert i >= a; /*** Assertion 2 ***/
12 return i;
13 }

Assertion 1, //@assert i < b, is supposedly supported by this point-to proof:

A. 0 <= a initially by line 2
B. i = 0 initially by line 5
C. i += 2 on each iteration by line 8
D. a += 1 on each iteration by line 9
E. i <= 2*a by (A), (B), (C), and (D)

Therefore we conclude that

F. i < b by (E) and line 2

Is this proof point-to valid? Yes No

If “No”, which step is not point-to valid? Explain why:

Assertion 2, //@assert i >= a, is supposedly supported by this point-to proof:

A. !(i < a) by line 6

Therefore we conclude that

B. i >= a by math on (A)

Is this proof point-to valid? Yes No

If “No”, which step is not point-to valid? Explain why:
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1.21.5pts
1 int f(int a, int b)
2 //@requires 0 <= a && a <= b;
3 {
4 int i = 0;
5 while (i < a)
6 //@loop_invariant i <= a;
7 {
8 //@assert i < b; /*** Assertion 1 ***/
9 i++;

10 }
11 //@assert i == a; /*** Assertion 2 ***/
12 return i;
13 }

Assertion 1, //@assert i < b, is supposedly supported by this point-to proof:

A. a <= b by line 2
B. i < a by line 5
C. a and b remain unchanged

Therefore we conclude that

D. i < b by math on (A), (B) and (C)

Is this proof point-to valid? Yes No

If “No”, which step is not point-to valid? Explain why:

Assertion 2, //@assert i == a, is supposedly supported by this point-to proof:

A. i < a to enter the loop by line 5
B. i grows by 1 in the loop by line 9

Therefore we conclude that

C. i == a by (A) and (B) after the loop

Is this proof point-to valid? Yes No

If “No”, which step is not point-to valid? Explain why:
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1.30.5pts
1 int f(int a, int b)
2 //@requires 0 < a && a < b;
3 {
4 while (a < b) {
5 //@assert a > 0; /*** Assertion 1 ***/
6 a += 1;
7 }
8 return b;
9 }

Assertion 1, //@assert a > 0, is supposedly supported by this point-to proof:

A. 0 < a initially by line 2
B. a is always increasing by line 6

Therefore we conclude that

C. a > 0 by math on (A) and (B)

Is this proof point-to valid? Yes No

If “No”, which step is not point-to valid? Explain why:

Your turn! For each of the assertions below:

• Either circle SUPPORTED if it can be proved by means of a valid point-to proof.
In this case, provide this proof by filling in the lines with a relevant fact on the
left and a justification for it on the right.

• Or circle UNSUPPORTED if no such proof exists. In this case, use the lines to
explain why there is no valid point-to proof for it.

In either case, you may not need all the lines provided.
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1.41pt
1 int f(int a)
2 //@requires 0 <= a && a <= 15122;
3 {
4 int i = 2*a;
5 while (i > a)
6 //@loop_invariant i >= a;
7 {
8 //@assert i > 0; /*** Assertion A ***/
9 a += 2;

10 i += 1;
11 }
12 //@assert i <= a; /*** Assertion B ***/
13 return i;
14 }

Assertion A is: SUPPORTED/UNSUPPORTED

a.
by

b.
by

c.
by

d.
by

e.
by

Therefore we can/cannot conclude that
e.

by

Assertion B is: SUPPORTED/UNSUPPORTED

a.
by

b.
by

c.
by

d.
by

e.
by

Therefore we can/cannot conclude that
e.

by
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2. Basics of C0: the int and bool Data Types

2.11.5pts Let p be an int in the C0 language. Express the following operations in C0 using
only constants in hexadecimal and only the bitwise operators (&, |, ^, ~, <<, >>).
Your answers should account for the fact that C0 uses 32-bit integers.
Each answer should consist of ONE line of C0 code. You can use multiple
constants and multiple bitwise operations, but no loops and no additional as-
signment statements.

1. Set x equal to p with its lowest 8 bits cleared to 0 and with its middle 8 bits
set to 1 (so that, for example, 0xAB12CD34 becomes 0xAB1FFD00).

int x = ;

2. Set y equal to p with its highest and lowest 16 bits swapped (so that, for
example, 0x1234ABCD becomes 0xABCD1234)

int y = ;

3. Set z equal to p with its middle 16 bits flipped (0 −→ 1 and 1 −→ 0) (so that,
for example 0xAB0F1812 becomes 0xABF0E712).

int z = ;

2.21pt The function no_overflow_add is intended to return true if result of adding
three non-positive numbers a, b, and c fits in 32 bits (if it does not overflow), and
false if it does.

• If the following code satisfies this description, explain why in one sentence.
• If it doesn’t satisfy this description, give 32-bit values for a, b, and c that

satisfy the preconditions and such that the call no_overflow_add(a,b,c)
returns true when it should have returned false, or vice versa. Explain
why the result is incorrect in this case.

bool no_overflow_add(int a, int b, int c)
//@requires a <= 0 && b <= 0 && c <= 0;
{
return a + b + c <= 0;

}
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2.31.5pts Two C0 expressions are equivalent, if identical inputs result in identical out-
comes, including errors. For example, (x∗y)/y and x are not equivalent, as when
y equals 0, the first expression raises an error. For each of the following state-
ments, determine whether the statement is true or false in C0. If it is true, explain
why. If it is false, give a counterexample using valid C0 values to illustrate why.

1. For every int y: (y != 0) && (y / y == 1) is equivalent to true.

⃝ Equivalent because ⃝ Not equivalent

Counterexample:

y =

2. For every int x, x < 0 is equivalent to −x > 0

⃝ Equivalent because ⃝ Not equivalent

Counterexample:

x =

3. For every int x, y and z, x ∗ y < z is equivalent to x < z/y

⃝ Equivalent because ⃝ Not equivalent

Counterexample:

x =

y =

z =

4. For every int x: (x << 1) >> 1 is equivalent to x.

⃝ Equivalent because ⃝ Not equivalent

Counterexample:

x =

5. For every int x and y:
(x%y < 122) && (y != 0) is equivalent to (y != 0) && (x%y < 122)

⃝ Equivalent because ⃝ Not equivalent

Counterexample:

x =

y =

© Carnegie Mellon University 2024
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3. Proving the correctness of functions with one loop

The Pell sequence is shown below:

0, 1, 2, 5, 12, 29, 70, 169, 408, 985, . . .

Each integer in in the sequence for n ≥ 3 is the sum of 2in−1 and in−2. By definition,
i1 = 0 and i2 = 1. Consider the following implementation for fastpell that returns
the nth Pell number, n ≥ 1, and the specification function PELL for it. The body of the
loop is not shown.

1 int PELL(int n)
2 //@requires n >= 1;
3 {
4 if (n <= 1) return 0;
5 else if (n == 2) return 1;
6 else return 2 * PELL(n-1) + PELL(n-2);
7 }
8

9 int fastpell(int n)
10 //@requires n >= 1;
11 //@ensures \result == PELL(n);
12 {
13 if (n <= 1) return 0;
14 if (n == 2) return 1;
15 int i = 0;
16 int j = 1;
17 int k = 2;
18 int x = 3;
19 while (x < n)
20 //@loop_invariant 3 <= x && x <= n;
21 //@loop_invariant i == PELL(x-2);
22 //@loop_invariant j == PELL(x-1);
23 //@loop_invariant k == i + 2*j;
24 {

// LOOP BODY NOT SHOWN: modifies i, j, k, and x
}

return k;
}

In this problem, we will reason about the correctness of the fastpell function when
the argument n is greater than or equal to 3, and we will complete the implementation
based on this reasoning.

(NOTE: To completely reason about the correctness of fastpell, we also need to
point out that fastpell(1) == PELL(1) and that fastpell(2) == PELL(2). This
is straightforward, because no loops are involved.)
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Note: The completed solution below shows you a general format for showing that a postcon-
dition holds given a valid loop invariant. The English explanation is kept to a minimum and
point-to reasoning plays a large role. In the future, you may be asked to write an entire solu-
tion in a clear, concise manner, and the solution below gives you an example of how you might
write such a solution.

3.11pt Loop invariant and negation of the loop guard imply postcondition
Complete the argument that the postcondition is satisfied assuming valid loop
invariant(s) by giving appropriate line numbers. Use point-to reasoning.

We know x <= n by line and

we know x >= n by line , which
implies that x == n by logic.

The returned value \result is the value of k after the loop, so to show
that the postcondition on line 11 holds when n >= 3, it suffices to show
k == PELL(n) after the loop.

A i == PELL(x-2) by

B j == PELL(x-1) by

C x >= 3 by

D x >= 1 by

E k == i + 2*j by

F == PELL(x-2) + 2*PELL(x-1) by

G == PELL(x) by PELL, commutativity of +, and C

3.21pt Loop invariant holds initially
Complete the argument for the loop invariants holding initially by giving appro-
priate line numbers. You do not need to cite the definition or code of PELL.

The loop invariant 3 <= x on line 20 holds initially by line(s)

The loop invariant x <= n on line 20 holds initially by line(s)

The loop invariant on line 21 holds initially by line(s)

The loop invariant on line 22 holds initially by line(s)

The loop invariant on line 23 holds initially by lines 17, 15 and 16.
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3.31pt The loop invariant is preserved through any single iteration of the loop
Based on the given loop invariants, write the body of the loop. DO NOT use the
specification function PELL(). The specification function is meant to be used
in contracts only. Also, do not call fastpell recursively, since this isn’t fast!
(NOTE: To check your answer, you would prove that the loop invariants are
preserved by an arbitrary iteration of the loop, but you don’t have to do that for
us here — we’ll cover that process in the next question.)

while (x < n)
//@loop_invariant 3 <= x && x <= n;
//@loop_invariant i == PELL(x-2);
//@loop_invariant j == PELL(x-1);
//@loop_invariant k == i + 2*j;
{

i = ;

j = ;

k = ;

x = ;

}

return k;

3.40.5pts The loop terminates
The postcondition is satisfied only if the loop terminates. Explain concisely why
the function must terminate with the loop body you gave in the previous task.
The expression you write must be decreasing.

The integer expression is strictly decreasing because

Since the loop terminates if the value of this expression reaches 0 or less and
it is strictly decreasing, the loop must terminate.

© Carnegie Mellon University 2024
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4. The Preservation of Loop Invariants

For each of the following loops, state whether the loop invariant is ALWAYS PRE-
SERVED or NOT ALWAYS PRESERVED.

• If you say that the loop invariant is always preserved, prove it using point-to
reasoning.

• If you say that the loop invariant is not always preserved, give a specific counterex-
ample. To do so, you must provide specific, concrete values of all local variables
such that

– the loop guard and loop invariant hold before the loop body executes for
some iteration,

– the loop invariant will not hold after the loop body executes that one itera-
tion,

– if the code mentions a function you don’t know anything about, you may
define it as you wish in your counterexample.

Here are two solved examples to give you an idea of how to write your solutions. In-
tegers are defined as C0’s 32-bit signed two’s-complement numbers; be careful about
this when you think about counterexamples!

1 while (x <= y)
2 //@loop_invariant x < y;
3 {
4 x = x + 1;
5 }

Solution: NOT ALWAYS PRESERVED

Counterexample: x=2 and y=3, satisfies loop invariant and loop guard.

After this iteration, x=3 and y=3, violating loop invariant.

1 while (x + 1 < y)
2 //@loop_invariant x < y + 1;
3 {
4 x = x + 2;
5 }

Solution: ALWAYS PRESERVED.

Assume: x < y + 1 (by line 2) before an iteration.

To show: x′ < y + 1 after an iteration.

Since x′ = x + 2 (by line 4), we need to show x + 2 < y + 1.
A. x + 1 < y by line 1
B. x + 2 <= y by math (because x + 1 < y)
C. y < y + 1 by line 2 that lets us know y != int_max()

D. x + 2 < y + 1 by B and C

© Carnegie Mellon University 2024
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4.11pt 1 while (a != b)
2 //@loop_invariant a > 0 && b > 0;
3 {
4 if (a > b) {
5 a = a - b;
6 } else {
7 b = b - a;
8 }
9 }

ALWAYS PRESERVED (Complete the indicated parts of the proof — you may not
need all lines provided)

We reason by case analysis on the relationship between the integers a and b.

Assume: a > 0 && b > 0

To show: a‘ > 0 && b‘ > 0

Case 1, (a > b):

A. by

B. by

C. by

D. by

E. by

F. by

G. by

H. by

I. by

Case 2, (a < b): similar (trust us!)

Case 3, (a == b):

Because we know a != b (line 11), this case is impossible.
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4.20.5pts 1 while (x < y)
2 //@loop_invariant x <= y;
3 {
4 x = x + z;
5 }

⃝ Always preserved

Assume:

To show:

Proof:
A. by
B. by
C. by
D. by
E. by

⃝ Not always preserved

Counterexample:

x =

y =

z =
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4.30.5pts 1 while (0 <= b && b < a)
2 //@loop_invariant a % 17 == 0 && b % 17 == 0;
3 {
4 a = a - b;
5 }

⃝ Always preserved

Assume:

To show:

Proof:
A. by
B. by
C. by
D. by
E. by
F. by

⃝ Not always preserved

Counterexample:

a =

b =

4.40.5pts In this task, you know nothing about what f computes.

1 while (a < 700)
2 //@loop_invariant a + b == f(a,b);
3 {
4 int c = f(a,b);
5 a += 1;
6 b = c - a - 1;
7 }

⃝ Always preserved

Assume:

To show:

Proof:
A. by
B. by
C. by
D. by
E. by

⃝ Not always preserved

Counterexample:

a =

b =

f(x,y) =
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4.50.5pts In this task, POW is the power function as defined in lecture.

1 while (e > 0)
2 //@loop_invariant e > 0 || accum == POW(x,y);
3 {
4 accum = accum * x;
5 e = e - 1;
6 }

⃝ Always preserved

Assume:

To show:

Proof:
A. by
B. by
C. by
D. by
E. by

⃝ Not always preserved

Counterexample:

e =

accum =

x =

y =
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