
15-122: Principles of Imperative Computation, Spring 2024

Written Homework 1

Due on Gradescope: Monday 15th January, 2024 by 9pm

Name:

Andrew ID:

Section:

This written homework is the first of two homeworks that will introduce you to the way
we reason about C0 code in 15-122. It also makes sure that you have a good understand-
ing of key course policies.

Preparing your Submission You can prepare your submission with any PDF editor that
you like. Here are a few that prior-semester students recommended:

• Kami, Adobe Acrobat Online, or DocHub, some web-based PDF editors that work
from anywhere.

• Acrobat Pro, installed on all non-CS cluster machines, works on many platforms.
• iAnnotate works on any iOS and Android mobile device.

There are many more — use whatever works best for you. If you’d rather not edit a PDF,
you can always print this homework, write your answers neatly by hand, and scan it into
a PDF file — we don’t recommend this option, though.

Please do not add, remove or reorder pages.

Caution Recent versions of Preview on Mac are buggy: annotations get occasionally
deleted for no reason. Do not use Preview as a PDF editor.

Submitting your Work Once you are done, submit this assignment on Gradescope. Al-
ways check it was correctly uploaded. You have unlimited submissions.

If you haven’t yet enrolled in Gradescope for this class, please do so by completing the
setup lab (see Diderot or the course web page).

Question: 1 2 3 4 5 Total

Points: 2.5 2 3 3.5 4 15

Score:

https://www.gradescope.com/courses/671297
https://www.kamiapp.com/
https://www.adobe.com/acrobat/online.html
https://dochub.com/
https://www.cmu.edu/computing/software/all/
https://www.iannotate.com/
https://www.gradescope.com/courses/671297
https://www.gradescope.com/courses/671297
https://www.diderot.one/courses/157

15-122 Written Homework 1 Page 1 of 11

1. Policies
Read the collaboration policy on the course website. For every statement in each
scenario below, mark whether it is OK or not OK according to the collaboration
policy. Take each action to be independent from others.

1.10.5pts Alex and Alice are on Zoom while completing a written homework.

not
OK OK

⃝ ⃝ Alex has already partially completed the homework and keeps it in
view on his computer while discussing it with Alice.

⃝ ⃝ Alice screenshares the blank homework writeup so they can both ref-
erence it.

⃝ ⃝ Alice asks Alex to check her work on Task 2 by reading her answer out
loud.

⃝ ⃝ Alex takes notes while brainstorming approaches and uses them to
complete the homework later.

⃝ ⃝ Alice draws a diagram on the whiteboard to explain this loop invariant
proof.

⃝ ⃝ Alex is working in a busy public area. Halfway through the home-
work, he leaves his computer unlocked to go to the bathroom.

1.20.5pts Mihir and Sophia are studying for a midterm together.

not
OK OK

⃝ ⃝ Sophia screenshares the review slides so that the two of them can fig-
ure out a confusing concept from lecture.

⃝ ⃝ Mihir draws out an array on a shared whiteboard to better understand
a sorting problem in the practice midterm.

⃝ ⃝ Mihir asks a student from a previous iteration of the course for the
midterm from that semester so that he could use the exam as practice.

⃝ ⃝ Mihir asks Sophia how she did a question on a previous, already
graded written assignment.

⃝ ⃝ Sophia looks up code for a previous programming assignment on
GitHub to figure out how to complete a particularly challenging task.

⃝ ⃝ Mihir takes notes during their study session and uses them when cre-
ating his allowed exam notes.

© Carnegie Mellon University 2024

https://cs.cmu.edu/~15122

15-122 Written Homework 1 Page 2 of 11

1.31pt Jackson asks Amanda for advice about the current programming homework.

not
OK OK

⃝ ⃝ Jackson forgets how to transfer files to AFS and Amanda tells him the
correct scp command.

⃝ ⃝ Amanda teaches Jackson some vim shortcuts.

⃝ ⃝ Jackson screenshares his code and asks Amanda to help him figure out
a bug.

⃝ ⃝ Amanda screenshares the blank homework writeup so they figure out
what Task 2 is asking them to do.

⃝ ⃝ Jackson writes out his pseudocode onto a shared whiteboard.

⃝ ⃝ Amanda says: “Just use two for loops, one for each array. You then
create a variable outside of both loops and just compare values to find
the overall maximum”.

⃝ ⃝ Amanda says: “The writeup said that we want to find the maximum
from these two arrays. If you’re stuck, I found it helpful to look at the
lecture notes on sorting.”

⃝ ⃝ Jackson asks Amanda to go over his code after both of them have made
their final submission, even though grades have not been released.
Amanda agrees and walks him through her answers.

⃝ ⃝ Jackson runs ChatGPT to implement task 2 and asks Amanda for help
fixing the resulting code.

1.40.5pts Liz is retaking the course.

not
OK OK

⃝ ⃝ To check her work, she looks at the written she did in a previous
semester.

⃝ ⃝ Her friend Ethan did very well in the course. When Liz gets stuck on
a task, she walks Ethan through her approach.

⃝ ⃝ She just doesn’t understand what task 5 of the current programming
homework is asking about. She asks her roommate Kevin, who com-
pleted the course two years ago, to explain it to her.

⃝ ⃝ VSCode stopped working for her. After closing all her assignment
files, she asks her other roommate, Brandon, who also completed the
course two years ago, to help her reset it.

⃝ ⃝ During the break before classes starts, Liz goes over all her past as-
signments that use contracts, taking detailed notes so that she can save
time in doing the assignment next time around.

⃝ ⃝ She is concerned about the upcoming lecture on amortized analysis
and reads the lecture notes ahead of time to prepare.

© Carnegie Mellon University 2024

15-122 Written Homework 1 Page 3 of 11

The next 3 tasks are ungraded but will help you think about the consequences of
various academic integrity infringements. For each statement give your best guess at
the right answer. Make sure to come back to it and check the actual correct answers.

1.50pts MOSS is the software service we use to check for plagiarized code.

1. Robbie is stuck on the last two tasks of the programming homework. Fara
sends him her code for them and he changes all variable names before sub-
mitting. Will MOSS detect this?

definitely / very likely / very unlikely / impossible

2. Robbie finds code for the current programming homework on GitHub, mod-
ifies it and then submits it. Will MOSS detect this?

definitely / very likely / very unlikely / impossible

3. Robbie asks Kevin, a student who completed the course three semesters
ago, for his code for the programming homework. Robbie makes cosmetic
changes and submits. Will MOSS detect this?

definitely / very likely / very unlikely / impossible

4. Robbie retakes the course and discovers that the next programming home-
work is the same as when he took it the first time around. He doesn’t look
at his old solution, but he is worried that his new code may be too similar to
his old code. Will MOSS detect a similarity?

definitely / very likely / very unlikely / impossible

1.60pts Generative AI Assistance
This task is meant to help you think about how Generative AI tools such as Chat-
GPT can impact your learning

1. Amanda has been relying heavily on ChatGPT in his assignments and gotten
decent grades. What is his likely performance in the upcoming midterm 1?

below average / average / above average

2. Iliano is very busy this semester and decides to use ChatGPT in his 15-122
assignments to free up time. How are his changes of passing 15-122?

less than 30% / 30% to 60% / better than 60%

3. Anne made it through 15-122 in great part thanks to ChatGPT. How is she
likely to do in his next CS course?

poorly / average / great

© Carnegie Mellon University 2024

https://theory.stanford.edu/~aiken/moss/

15-122 Written Homework 1 Page 4 of 11

1.70pts Academic Integrity Violation Consequences
This part is meant to help you think about the consequences of cheating.

1. Iliano and Anne were caught cheating on task 3 of the current written as-
signment. Both get reported. What will happen to their grade?

⃝ they get a zero on task 3

⃝ they get a zero for the whole assignment

⃝ they get a negative grade for the whole assignment

⃝ they fail the course

2. Brandon, a student from a previous semester, got caught giving his code to
Iliano who is currently taking the course. What will happen to Brandon?

⃝ nothing

⃝ he gets reported and nothing else

⃝ he gets reported and is given a symbolic zero on that assignment

⃝ he gets reported and his course grade is lowered by one letter grade

⃝ he gets suspended

3. Iliano was reported for an academic integrity violation in a history course
last semester and is being reported again this semester for copying code.
What will happen to him?

⃝ nothing besides the new report

⃝ he will appear in front of an academic review board (ARB) and be given
a stern lecture

⃝ he will appear in front of an ARB and most likely be suspended

⃝ he will appear in front of an ARB and most likely be expelled

1.80pts Academic Integrity Contract
Now that you had a chance to reflect on the collaboration policy of the course, we
ask you to complete and sign the contract on the next page. By doing this, you
declare that you understand the course policy on academic integrity and commit
to abide by it. Like any contract, read it carefully. Please reach out to the course
staff if you have any questions.
Although this task is worth 0 points, failure to complete and sign the contract
will carry a penalty of -500 points, i.e., guaranteed failure in the course.

© Carnegie Mellon University 2024

15–122 — Principles of Imperative Computation, Spring 2024

The value of your degree depends on the academic integrity of yourself and your peers in each
of your classes. It is expected that, unless otherwise instructed, the work you submit as your
own will be your own work and not someone else’s work or a collaboration between yourself and
other(s).

Please read carefully the academic integrity policy of this course and the University Policy on
Academic Integrity carefully to understand the penalties associated with academic dishonesty
at Carnegie Mellon. In this class, cheating/copying/plagiarism means copying all or part of a
program or homework solution from another student or unauthorized source such as the Internet,
giving such information to another student, having someone else do a homework or take an exam
for you, reusing answers or solutions from previous editions of the course, or giving or receiving
unauthorized information during an examination. In general, each solution you submit (quiz,
written assignment, programming assignment, midterm or final exam) must be your own work.
In the event that you use information written by another person in your solution, you must cite
the source of this information (and receive prior permission if unsure whether this is permitted).
It is considered cheating to compare complete or partial answers, copy or adapt others’ solutions,
read other students’ code or show your code to other students, or sit near another person who is
taking the same course and complete an assignment together. Writing code for others to see (e.g.,
on a whiteboard) is never permitted. It is also considered cheating for repeating students to reuse
their solutions from a previous semester, or any instructor-provided sample solution.

It is a violation of this policy to hand in work for other students.

Your course instructors reserve the right to determine an appropriate penalty based on the vio-
lation of academic dishonesty that occurs. Penalties are severe: a typical violation of the university
policy results in the student failing this course, but may go all the way to expulsion from Carnegie Mellon
University. If you have any questions about this policy and any work you are doing in the course,
please feel free to contact your instructors for help.

We will be using the MOSS system to detect software plagiarism.

By checking the second box below, you commit to performing a chicken dance in front of the TAs
at office hours. Most people do not check this box.

It is not considered cheating to clarify vague points in the assignments, lectures, lecture notes, or
to give help or receive help in using the computer systems, compilers, debuggers, profilers, or
other facilities, but you must refrain from looking at other students’ code while you are getting
or receiving help for these tools. It is not cheating to review graded assignments or exams with
students in the same class as you, but it is considered unauthorized assistance to share these
materials between different iterations of the course. Do not post code from this course publicly
(e.g., to Bitbucket or GitHub).

I have read the statements above and reviewed the course policy for cheating and plagiarism.

I agree to the clause in paragraph 6.

By signing below, I commit to abiding by these policies in this course.

Andrew ID

Name (print) Section

Signature Date

https://cs.cmu.edu/~15122/about.shtml#AIP
http://www.cmu.edu/policies/documents/Academic%20Integrity.htm
http://www.cmu.edu/policies/documents/Academic%20Integrity.htm
https://theory.stanford.edu/~aiken/moss/

15-122 Written Homework 1 Page 6 of 11

2. Running C0 Programs

Assume we have the files num.c0 and num-test.c0. The file num.c0 contains a func-
tion num that takes an integer argument and returns an integer. The file num-test.c0
contains this main function (and nothing else):

int main() {
int x = num(15124);
return x;

}

How to run this program? Check out a relevant page in the C0 Tutorial at https:
//bitbucket.org/c0-lang/docs/wiki/Tutorial and answer the following ques-
tions.

2.11pt From the command line, show how to display the value returned by num(15124)
using the C0 compiler.

2.21pt From the command line, show how to display the value returned by num(15124)
using the C0 interpreter.

© Carnegie Mellon University 2024

https://bitbucket.org/c0-lang/docs/wiki/Tutorial
https://bitbucket.org/c0-lang/docs/wiki/Tutorial
https://bitbucket.org/c0-lang/docs/wiki/Tutorial

15-122 Written Homework 1 Page 7 of 11

3.3pts Preconditions and Postconditions

For the following functions, either check the box that says the postcondition always
holds when the function is given inputs that satisfy its preconditions or give a con-
crete counterexample: specific values of the inputs such that the preconditions (if
there are any) holds and the postcondition does not hold. You don’t have to write
any proofs.

int f1(int x, int y)
//@requires 0 <= x && x < y;
//@ensures \result >= 0;
{
return y - x;

}

@ensures always true?

x = y =

int f2(int x)
//@requires x % 2 == 0;
//@ensures x < 0 || \result < x;
{
return x / 2;

}

@ensures always true?

x =

int f3(int x, int y)
//@requires y > 0;
//@ensures \result < y;
{
return x % y;

}

@ensures always true?

x = y =

int f4(int x, int y)
//@requires x + y == 5;
//@ensures \result - x == y;
{
return 5;

}

@ensures always true?

x = y =

int f5(int x, int y)
//@ensures \result < 0;
{
if (x > 0) x = -x;
if (y > 0) y = -y;
if (y < x) {
return y - x;

} else {
return x - y;

}
}

@ensures always true?

x = y =

int f6(int x, int y)
//@ensures \result >= 0;
{
if (x >= 0) x = -x;
if (y >= 0) y = -y;
if (y <= x) {
return y - x;

} else {
return x - y;

}
}

@ensures always true?

x = y =

© Carnegie Mellon University 2024

15-122 Written Homework 1 Page 8 of 11

4. Thinking about Loops

When we think about loops in 15-122, we will always concentrate on a single arbitrary
iteration of the loop. A loop will almost always modify something; the following loop
modifies the local variable i.

while (i < n) {
i = i + 4;

}

In order to reason about the loop, we have to think about the two different values
stored in the variable i during an iteration. We use the variable i to talk about the
value stored in the variable i before the loop runs (before the loop guard is checked
for the first time). We use the “primed” variable i′ to talk about the value stored in
the variable i after the loop runs exactly one more time (before the loop guard is next
checked).

An important part of figuring out what a loop does is to understand how it variables
are updated, i.e., what the value of the prime variables are. This question is about
this. Write all your answers in simplified form.

4.11pt Consider the following loop:

while (a < n) {
c = b + c;
b = b * 2 + a;
a = a + 1;

}

• If a = 7, b = 3, and c = 9, then assuming 7 < n,

a′ = , b′ = , and c′ =

• If a = 2y, b = x− y, and c = y, then assuming 2y < n, in terms of x and y,

a′ = , b′ = , and c′ =

• If b = c, then assuming a < n, in terms of a and c,

a′ = , b′ = , and c′ =

• In general, assuming a < n, then in terms of a, b, and c,

a′ = , b′ = , and c′ =

Note that we always say “assuming (something) < n,” because if that were not
the case the loop wouldn’t run, and it wouldn’t make any sense to be talking
about the values of the primed variables.

© Carnegie Mellon University 2024

15-122 Written Homework 1 Page 9 of 11

4.21pt Consider this loop:

while (...) {
a = a + 3;
b = b * 2 + a;
c = c + a - b;

}

Be careful, it looks similar but is trickier! Give simplified answers.
• If a = 7, b = 3, and c = 9, then assuming the loop guard evaluates to true,

a′ = , b′ = , and c′ =

• In general, assuming the loop guard evaluates to true, then in terms of a, b,
and c,

a′ = b′ = , and c′ = ,

4.31.5pts Consider this loop:

while (a > 0 && b > 0) {
if (a > b) {

a = a-b;
} else {

b = b-a;
}

}

• If a = 94 and b = 12, then

a′ = and b′ =

• If a = x+ y and b = x, where x and y are both positive integers, then

a′ = and b′ =

• If a = x and b = x + z, where x is a positive integer and z is a non-negative
integer, then

a′ = and b′ =

• If a > 0 and b > 0, one of the two cases above will always be the case.
Therefore, we can conclude which of the following about the values stored
in a and b after an arbitrary iteration of the loop? (Check all that apply)

a′ ≥ 0 and b′ ≥ 0

a′ > 0 and b′ ≥ 0

a′ ≥ 0 and b′ > 0

a′ > 0 and b′ > 0

© Carnegie Mellon University 2024

15-122 Written Homework 1 Page 10 of 11

5. Proving a Function Correct

In this question, we’ll do part of the proof of correctness for a function compute_square
relative to a specification function SQUARE. You may assume that the loop invariants
have already been proved to be valid.

int compute_square(int v) {
int sum = 0;
while (v > 0) {
sum += 2*v - 1;
v--;

}
return sum;

}

5.11pt Complete the specification function below with the simple mathematical formula
in C0 that gives the square of the number v.

1 int SQUARE(int v)
2 //@requires 0 <= v && v < 2024;
3 {
4 return ;
5 }

Give a postcondition for compute_square using this specification function. Also
give the expected value of v after the loop.

7 int compute_square(int val)
8 //@requires 0 <= val && val < 2024;
9

10 //@ensures ;
11 {
12 int v = val;
13 int sum = 0;
14 while (v > 0)
15 //@loop_invariant 0 <= v;
16 //@loop_invariant v <= 2024;
17 // Additional loop invariant will go here
18 {
19 sum += 2*v - 1;
20 v--;
21 }
22 //@assert v == ;
23 return sum;
24 }

Note: in the real world we wouldn’t have an efficient closed-form solution used as a
specification function for an inefficient loop-based solution. We usually use the slow,
simple version as the specification function for the fast one!

© Carnegie Mellon University 2024

15-122 Written Homework 1 Page 11 of 11

5.20.5pts Had we not introduced the local variable v on line 12 and used val instead,
compute_square would not compile. Explain why.

5.31.5pts Using SQUARE everywhere possible, give a suitable extra invariant that would
allow us to prove the function correct. (Consider creating a table with values that
change during the loop.)

17 //@loop_invariant ;

To which line numbers would we point to support the assertion you completed
on line 22?

Plug the value you wrote on line 22 for v into your loop invariant for line 17 and
show that it simplifies to the postcondition on line 10 (if it doesn’t, you will want
to look for a different loop invariant). This proves that the loop invariants and the
negation of the loop guard imply the postcondition. Show your work.

5.41pt Termination arguments for loops (in this class) have the following form:

During an arbitrary iteration of the loop, the expression . . . gets strictly
larger / smaller , but this expression can’t get larger / smaller than . . .

on which the loop guard is false.

Fill the blanks and circle either “larger” or “smaller” (in two places) to justify
that the loop in compute_square terminates.

During an arbitrary iteration of the loop, the expression

gets strictly larger / smaller ,

but this expression can’t ever get larger / smaller than on
which the loop guard is false.

© Carnegie Mellon University 2024

