
Midterm 1 Solutions

15-122 Principles of Imperative Computation

Thursday 2nd October, 2014

Name: Harry Bovik

Andrew ID: bovik

Recitation Section: S

Instructions

• This exam is closed-book with one sheet of notes permitted.

• You have 80 minutes to complete the exam.

• There are 5 problems on 10 pages (including 2 blank pages at the end).

• Use a dark pen or pencil to write your answers.

• Read each problem carefully before attempting to solve it.

• Do not spend too much time on any one problem.

• Consider if you might want to skip a problem on a first pass and return to it later.

• You can assume the presence of #use <util> and the arrayutil.c0 library throughout the
exam. The interface for some of these functions is repeated at the end of this exam.

Max Score

True or false 34

Contracts 35

Pixels revisited 30

Images 24

Spiral Sort 27

Total: 150

1

15-122 (Fall 2014) Midterm 1 Solutions Page 2/10

1 True or false (34 points)

Task 120pts For each of the following C0 statements, either a) write always true if the statement will
always evaluate to true or b) give specific, concrete values of the variables in either hex or in
decimal such that the statement will either evaluate to false or raise an arithmetic error.

We’ll deduct points for writing always true if there’s a counterexample or for claiming a
counterexample if it’s always true (but not for blanks), so it’s not advantageous to guess.

x << 4 == x * 4 x any non-zero number

x << 2 == x * 4 always true

x >> 2 == x / 4 x any odd negative number

(~x) + 1 == -x always true

y <= 0 || (x / y) * y == x y doesn’t evenly divide x (x = 4, y = 3)

x != -x x is 0, 0x80000000, -231, -2147483648

x != ~x always true

-(-x) == x always true

y <= 0 || x / y <= x y > 1, x < 0 (x = -12, y = 3)

x <= x + 1 x is 0x7FFFFFFF, 231-1, 2147483647

Task 214pts Answer true or false (nothing more) to the following statements. We’ll deduct points
for incorrect answers (but not for blanks), so it’s not advantageous to guess.

Multiplying two numbers in C0 can never
cause an arithmetic error to occur.

TRUE

Creating an array in C0 with alloc_array
can never cause an error to occur.

FALSE
(allocating a negative-length array)

In the worst case, binary search in an array of
size n will run in O(log n) time.

TRUE

In the worst case, quicksort on an array of size
n will run in O(n log n) time.

FALSE
(average case O(n logn), worst case O(n2))

3n+ 4 ∈ O(n) TRUE

6n1.5 + n ∈ O(n2) TRUE

n log n ∈ O(15n) FALSE

c© Carnegie Mellon University 2018

15-122 (Fall 2014) Midterm 1 Solutions Page 3/10

2 Contracts (35 points)
This function attempts to mimic the is_sorted(A, lower, upper) specification function.

It has all sorts of issues.

1 bool check_is_sorted(int[] A, int lower, int upper)
2 //@requires 0 <= lower && lower <= upper && upper <= \length(A);
3 {
4 for(int i = 0; i < upper; i++)
5 //@loop_invariant lower <= i && i <= upper;
6 {
7 if (A[i] > A[i+1]) return false;
8 }
9 return true;

10 }

If given the 5-element array containing the integers [1, 2, 3, 3, 2], as a first argument, give specific
values of upper and lower that meet the preconditions such that, when compiled and run with
contract checking on (-d). . .

Task 15pts . . . the function will return false without failing a contract or accessing an array out of
bounds.

lower = 0, upper = 4

Task 25pts . . . the loop invariant will fail.

lower = 1, upper = 1,2,3,4,5 or lower = 2, upper = 2,3,4,5 or lower = 3, upper = 3,4,5 or
lower = 4, upper = 4,5 or lower = 5, upper = 5

Task 35pts . . . an array will eventually be accessed out of bounds.

lower = 0, upper = 5

Task 44pts Rewrite line 4 so that the loop invariant is valid, all array accesses are safe, and the func-
tion correctly checks that the array is sorted from lower (inclusive) to upper (exclusive).

for (int i = lower ; i < upper-1 ; i++)

c© Carnegie Mellon University 2018

15-122 (Fall 2014) Midterm 1 Solutions Page 4/10

The questions on this page deal with reasoning about safety. You only need to list line
numbers. Do not list unnecessary line numbers.

1 int test(int[] A, int n)
2 //@requires 0 <= n;
3 //@requires n < \length(A);
4 {
5 int i = 0;
6 while (i < n)
7 //@loop_invariant 0 <= i;
8 //@loop_invariant i <= n;
9 {

10 A[i+1] = A[i+1] + 1;
11 i = i + 1;
12 }
13 return A[i] - 1;
14 }

Task 53pts Which line(s) would we need to reference to justify that the loop invariant 0 <= i on line
7 holds initially?

Just line 5

Task 63pts Which line(s) would we need to reference to justify that the loop invariant i <= n on line
8 holds initially?

2 and 5

Task 75pts Which line(s) would we need to reference to justify the safety of the array accesses A[i+1]
on line 10?

6, 7, and 3

Task 85pts Which line(s) would we need to reference to justify the safety of the array access A[i] on
line 13?

Alternative 1: 2, 3, 6, and 8 (7 is unnecessary, we already know i == n)
Alternative 2: 3, 7, and 8
(7 tells us 0 <= i, and the other two tell use i <= n < \length(A), which suffices
to show safety).

c© Carnegie Mellon University 2018

15-122 (Fall 2014) Midterm 1 Solutions Page 5/10

3 Pixels revisited (30 points)
Recall the interface to pixels:

// typedef ______ pixel;

pixel make_pixel(int A, int R, int G, int B)
/*@requires 0 <= A && A < 256; @*/
/*@requires 0 <= R && R < 256; @*/
/*@requires 0 <= G && G < 256; @*/
/*@requires 0 <= B && B < 256; @*/ ;

int get_alpha(pixel P) /*@ensures 0 <= \result && \result < 256; @*/ ;
int get_red(pixel P) /*@ensures 0 <= \result && \result < 256; @*/ ;
int get_green(pixel P) /*@ensures 0 <= \result && \result < 256; @*/ ;
int get_blue(pixel P) /*@ensures 0 <= \result && \result < 256; @*/ ;

Task 15pts The inversion transformation leaves alpha values of pixels untouched, but for the R, G,
and B color intensities, it replaces an intensity of 255 with 0, an intensity of 254 with 1, an
intensity of 253 with 2... and so on to replacing an intensity of 0 with 255.

Implement the inversion transformation using only numeric constants written in hex and
the numeric operations +, -, and * (you don’t need to use all of them!)

pixel invert(pixel P) {
int A = get_alpha(P);
int R = get_red(P);
int G = get_green(P);
int B = get_blue(P);

return make_pixel(A , 0xFF-R ,

0xFF-G , 0xFF-B);
}

Task 25pts Implement the inversion transformation using only numeric constants written in hex and
the bitwise operations ~, ^, |, and & (you don’t need to use all of them!)

pixel invert(pixel P) {
int A = get_alpha(P);
int R = get_red(P);
int G = get_green(P);
int B = get_blue(P);

return make_pixel(A , 0xFFˆR ,

0xFFˆG , 0xFFˆB);
}

c© Carnegie Mellon University 2018

15-122 (Fall 2014) Midterm 1 Solutions Page 6/10

Task 315pts Given the following struct declaration and typedefs, fill in a data structure invariant
is_pixel and implement make_pixel and get_red. All functions should be safe, cor-
rect, and should provably satisfy their contracts.

struct pixel_header {
int A; // Stores the alpha value
int R; // Stores the red value
int G; // Stores the green value
int B; // Stores the blue value

};
typedef struct pixel_header* pixel;

bool is_pixel(struct pixel_header* P) {

if (P == NULL) return false;
if (!(0 <= P->A && P->A < 256)) return false;
if (!(0 <= P->R && P->R < 256)) return false;
if (!(0 <= P->G && P->G < 256)) return false;
if (!(0 <= P->B && P->B < 256)) return false;
return true;

}

pixel make_pixel(int A, int R, int G, int B)
//@requires 0 <= A && A < 256 && 0 <= R && R < 256;
//@requires 0 <= G && G < 256 && 0 <= B && B < 256;
//@ensures is_pixel(\result);
{

pixel P = alloc(struct pixel_header);
P->A = A;
P->R = R;
P->G = G;
P->B = B;
return P;

}

int get_red(pixel P)
//@requires is_pixel(P);
//@ensures 0 <= \result && \result < 256;
{

return P->R;

}

c© Carnegie Mellon University 2018

15-122 (Fall 2014) Midterm 1 Solutions Page 7/10

Task 45pts This implementation of pixels is safe, and it provably satisfies its contracts, but it’s not
correct.

bool is_pixel(struct pixel_header* P) {
return true;

}

pixel make_pixel(int A, int R, int G, int B)
//@requires 0 <= A && A < 256 && 0 <= R && R < 256;
//@requires 0 <= G && G < 256 && 0 <= B && B < 256;
//@ensures is_pixel(\result);
{

return NULL;
}

int get_red(pixel P)
//@requires is_pixel(P);
//@ensures 0 <= \result && \result < 256;
{

return 200;
}

Write a unit test that respects the pixel interface and detects the bug in this implementation
by failing an assertion.

int main() {

pixel P = make_pixel(0, 0, 0, 0);
assert(get_red(P) == 0);

return 0;
}

c© Carnegie Mellon University 2018

15-122 (Fall 2014) Midterm 1 Solutions Page 8/10

4 Images (24 points)
In this question, we will consider two versions of the same image, which has width of w and
height of h. The first is an arbitrary image, the second is a version of the original image where
each row has been sorted by average pixel intensity. Here’s one example of such a pair of
images:

Task 19pts Using selection sort, the time it would take to produce the image on the right from the
image on the left would be in O(hw2). If this process took exactly 1 second on an image
with width 500 and height 500, how long would we expect this sorting process to take. . .

• . . . if the width was 1000 and the height was 500? 4 seconds

• . . . if the width was 500 and the height was 1000? 2 seconds

• . . . if the width was 1500 and the height was 2000? 36 seconds

Task 215pts For each of the problems below, describe the tightest possible Big-O bounds for the time
it would take to solve that problem in the worst case using the algorithms we have dis-
cussed in class. Your answer should be in terms of w and h.

Using the original im-
age like the one above
on the left. . .

Using the sorted im-
age like the one above
on the right. . .

Deciding whether a pixel with a
given average intensity i exists any-
where in the image.

O(hw) O(h logw)

Finding the lowest-intensity pixel
(the darkest pixel) anywhere in the
image.

O(hw) O(h)

Finding the row with the lowest aver-
age intensity in the image (that is, the
on-average darkest row).

O(hw) O(hw)

c© Carnegie Mellon University 2018

15-122 (Fall 2014) Midterm 1 Solutions Page 9/10

5 Spiral Sort (27 points)
In this problem, we discuss spiral sort, a variant of insertion sort. Its chief (and perhaps its
only) virtue is that its code it exceedingly short.

1 void spiralsort(int[] A, int n)
2 //@requires 0 <= n && n <= \length(A);
3 //@ensures is_sorted(A, 0, n);
4 {
5 for (int i = 0; i < n; i++)
6 //@loop_invariant 0 <= i && i <= n;
7 //@loop_invariant is_sorted(A, 0, i);
8 for (int k = 0; k < i; k++)
9 //@loop_invariant 0 <= k && k <= i;

10 //@loop_invariant is_sorted(A, 0, i);
11 // Another loop invariant will be needed...
12 if (A[i] < A[k])
13 swap(A, i, k);
14 return;
15 }

The loop invariants given above will never fail during the actual evaluation of spiralsort,
but the loop invariants on the inner loop are not strong enough to prove the correctness of the
function until we add an additional loop invariant on line 11.

Task 15pts What is the Big-O running time of spiral sort on an array of length n? (When compiled
without -d, of course.)

O(n2)

Task 25pts Show that we can’t reason about the inner loop invariant being preserved: give a value
for k and contents of an array A such that the loop invariants on lines 9 and 10 hold, the
loop guard on line 8 evaluates to true, but the loop invariant on line 10 will not hold the
next time it is checked.

i = 3

k = either 1 or 2

A = 0 2 3 1 whatever

A[3] must be less than BOTH A[k] and A[k-1]

c© Carnegie Mellon University 2018

15-122 (Fall 2014) Midterm 1 Solutions Page 10/10

Task 35pts The loop invariant A[k-1] <= A[i] is almost right. What would be wrong with adding
this as a loop invariant on line 11?

When k == 0 initially this will cause an array-out-of-bounds access.

Task 45pts Give a better additional loop invariant for the inner loop (which would belong on line 11)
that allows us to show that all loop invariants are preserved. You can use functions from
arrayutil.c0 as discussed in class, but this is not necessary.

k == 0 || A[k-1] <= A[i]

or ge_seg(A[i], A, 0, k)

Task 57pts Taking for granted that the inner loop invariants are true initially and preserved by ev-
ery iteration of the loop, explain why the outer loop invariants are preserved by every
iteration of the outer loop. You’ll need to use your answer in part (d).

The first loop invariant is preserved because a single increment of the loop adds one
to i, i < n before the loop (line 5) so i′ == i+1 <= n after the loop. 0 <= i before
the loop and 0 <= i’ after the loop; the loop guard sufficies to ensure that we won’t
run in to overflow. (Worth 2 points if everything else goes wrong.)

Key points for the preservation of the second loop invariant:
At the end of the loop, k == i (lines 8 and 9)
So A[i-1] <= A[i] or ge_seg(A[i], 0, i). (line 11)
We have that is_sorted(A,0,i) (line 10)
And the combination of these facts gives is_sorted(A,0,i+1), which is what we
need to show, because i′ == i+1.

c© Carnegie Mellon University 2018

	True or false
	Contracts
	Pixels revisited
	Images
	Spiral Sort

