
15-122: Principles of Imperative Computation Spring 2024

Recitation 11: C-ing is Believing Thursday March 28th

printf

Like C0, C provides printf to print values to terminal. However, C supports many more format

speci�ers than C0 (which has only %d, %s and %c). Particularly useful are

� %u to print an unsigned int,

� %ld to print a long,

� %lu to print an unsigned long, and

� %zu to print a size_t.

Feel free to search online for format speci�ers for more types.1

An argument corresponding to %d (or %i) must have type int (or smaller signed types like short
and signed char). Providing an argument of any other type is unde�ned behavior � it may print

the expected result, or it may not on any given execution. Thus,

int z = -500;
printf("%u\n", z);

is unde�ned behavior. See the Guide to Success on Printing in C for more information about

printf.

structs on the stack

In C0 and C1, if we ever wanted to create a struct, we had to explicitly allocate memory for it

using alloc. C doesn't have this restriction � you can declare struct variables on the stack, just

like int's. We set a �eld of a struct with dot-notation, below. Recall that when we had a pointer

p to a struct, we accessed its �elds with p->data. This is just syntactic sugar for (*p).data.

1The C++ document http://cplusplus.com/reference/cstdio/printf is a good reference (C behaves simi-
larly).

© Carnegie Mellon University 2024

http://cplusplus.com/reference/cstdio/printf

Checkpoint 0

Here are two programs that are identical except that one allocates a struct point on the stack

and the other on the heap. Write down what the two pairs of printf statements will print. You

may want to trace both programs using the memory diagram templates below.

#include <stdio.h>

struct point {
int x;
char y;

};

int main () {
struct point a;
a.x = 3;
a.y = ’c’;
struct point b = a;
b.x = 4;
b.y = ’d’;

// what gets printed out here?
printf("a.x, a.y: %d, %c\n", a.x, a.y);
// how about here?
printf("b.x, b.y: %d, %c\n", b.x, b.y);

}

int main () {
struct point* a = xmalloc(sizeof(struct point));
a->x = 3;
a->y = ’c’;
struct point* b = a;
b->x = 4;
b->y = ’d’;

// what gets printed out here?
printf("a->x, a->y: %d, %c\n", a->x, a->y);
// how about here?
printf("b->x, b->y: %d, %c\n", b->x, b->y);
free(a);

}

2

Addressing all things

We have already seen the �address-of� operator, &, used to get function pointers in C1. In C, we

can do the same thing with variables. This is useful if you want to give a function a reference to a

local variable. Remember to only free pointers returned from malloc or calloc!

Checkpoint 1

1 #include <stdio.h>
2 #include "lib/contracts.h"
3

4 void bad_mult_by_2(int x) {
5 x = x * 2;
6 }
7

8 void mult_by_2(int* x) {
9 REQUIRES(x != NULL);

10 *x = *x * 2;
11 }
12

13 int main () {
14 int a = 4;
15 int b = 4;
16 bad_mult_by_2(a);
17 mult_by_2(&b);
18 printf("a: %d b: %d\n", a, b);
19 return 0;
20 }

What is the output when this program is run?

3

Casting

C provides many di�erent types to represent in-

teger values. Some are signed while others are

unsigned, and they aren't necessarily 32-bit long

(for example a short is commonly 16 bits).

Sometimes, if we really know what we are do-

ing, we may want or need to convert between

these types. We can do so by casting. The

�ow chart to the right summarizes what hap-

pens when casting a numerical expression exp
of type old_type to type new_type.

The general rule of thumb is that value is pre-

served whenever possible, and the bit pattern is

preserved otherwise.

Here is one example of each situation:

// -3 is representable as an int
signed char x = -3; // x is -3 (= 0xFD)
int y = (int)x; // y is -3 (= 0xFFFFFFFD)

// -241 is NOT representable as a SIGNED char and the new type is signed
int x = -241; // x is -241(= 0xFFFFFF0F)
signed char y = (signed char)x; // y is ?? (often 0x0F)

// -3 is NOT representable as a UNSIGNED int, the new type is bigger
signed char x = -3; // x is -3 (= 0xFD)
unsigned int y = (unsigned int)x; // y is 4294967293 (= 0xFFFFFFFD)

// -3 is NOT representable as a UNSIGNED char, the new type and smaller or equal
signed char x = -3; // x is -3 (= 0xFD)
unsigned char y = (unsigned char)x; // y is 253 (= 0xFD)

Checkpoint 2

Assume that a char is 8 bits and an int is 32 bits and that negative numbers use two's complement.

� The values represented by an int range from -2147483648 to 2147483647.

� The values represented by an unsigned int range from to .

� The values represented by a signed char range from to .

� The values represented by anunsigned char range from to .

4

switch statements

A switch statement is a di�erent way of expressing a conditional. Here's an example:

1 void print_dir(char c) {
2 switch (c) {
3 case ’l’:
4 printf("Left\n");
5 break;
6 case ’r’:
7 printf("Right\n");
8 break;
9 case ’u’:

10 printf("Up\n");
11 break;
12 case ’d’:
13 printf("Down\n");
14 break;
15 default:
16 fprintf(stderr, "Specify a valid direction!\n");
17 }
18 }

Each case's value should evaluate to a constant integer type (this can be of any size, so chars, ints,
long long ints, etc).

The break statements here are important: If we don't have them, we get fall-through: without the

break on line 11 we'd print �Up� and then �Down� for case ’u’.

Checkpoint 3

Fall-through is useful but can be tricky. What's wrong with the following code? How do you �x it?

#include <stdio.h>
#include <stdlib.h>
void check_parity(int x) {
switch (x % 2) {
case 0:
printf("x is even!\n");

default:
printf("x is odd!\n");

}
}

5

Common Pitfalls

Checkpoint 4

What's wrong with each of these pieces of code?

(a) 1 int* add_sorta_maybe(int a, int b) {
2 int x = a + b;
3 return &x;
4 }

(b) 1 void print_int(int* i) {
2 printf("%d\n", *i);
3 free(i);
4 }
5

6 int main() {
7 int x = 6;
8 print_int(&x);
9 return 0;

10 }

(c) 1 int main() {
2 int *A[2];
// A stack-allocated 2-element int* array

3 A[0] = xmalloc(sizeof(int));
4 A[1] = A[0];
5 free(A[0]);
6 free(A[1]);
7 return 0;
8 }

(d) 1 int main () {
2 unsigned int x = 0xFE1D;
3 short y = (short)x;
4 return 0;
5 }

(e) 1 int main() {
2 char* s = "15-122";
3 s[4] = ’1’; // blasphemy
4 printf(s);
5 return 0;
6 }

(f) 1 int main() {
2 char s[] = {’a’, ’b’, ’c’};
3 printf("%s\n", s);
4 return 0;
5 }

6

