
15-122: Principles of Imperative Computation Spring 2024

Recitation 08: Generically Speaking Thursday March 7th

Generic/Void Pointers

In C1, we introduce the concept of generic pointers, also known as void pointers (whose type is

void*). These are pointers that can have any underlying pointer type. We can create void pointers

by casting other pointers to void*:

int* int_pointer = alloc(int);
void* void_pointer = (void*)int_pointer;

We recover the original pointer by casting this void pointer back to an int*:

//@assert \hastag(int*, void_pointer);
int* orig_int_pointer = (int*)void_pointer;

Note that we cannot cast a void pointer to a type other than that of the original pointer, which was

int* here. We use the \hastag assertion to check the underlying type of a void pointer. NULL has

all tags but no expression can have tag void*.

We also cannot dereference or allocate void pointers: *void_pointer would cause a compilation

error. To access the value that void_pointer points to, we need to �rst cast it back to an int
pointer. We only cast pointer types to void*! For example, you cannot cast an int to a void* �

you would need to allocate an int* to be able to cast to void*.

Function Pointers

In C1, we can also have pointers to functions. These function pointers hold the address of the

function itself, and are associated with a function type. The type of a function is determined by

the number and types of its inputs along with its return type. For example, the declarations:

typedef int one_input_fn(int a); // Functions of this type take 1 input
typedef int two_input_fn(int a, int b); // Functions of this type take 2 inputs

de�nes the type one_input_fn of functions that take a single argument of type int and return a

result also of type int, and the type two_input_fn of functions that take two ints and return an

int, respectively. We can then use these function types in our code:

one_input_fn* f = &fact;
one_input_fn* g = &fib;

int x = (*f)(5); // This is calling fact(5), so x is now 120
int y = (*g)(5); // This is calling fib(5), so y is now 8

two_input_fn* j = &pow;
int z = (*j)(2, 4); // This is calling pow(2, 4), so z is now 16

But we can't assign &pow to a variable of type one_input_fn* because the number of arguments

does not match. Same thing if trying to assign &fact to a variable of type two_input_fn:

one_input_fn* too_many = &pow; // BAD: THIS WON’T TYPECHECK
two_input_fn* not_enough = &fact; // BAD: THIS WON’T TYPECHECK

© Carnegie Mellon University 2024

Checkpoint 0

Below is the interface for generic stacks in C1:

// typedef ______* stack_t;
typedef void* elem; // the stack elements are generic pointers

int stack_size(stack_t S)
/*@requires S != NULL; @*/;
/*@ensures \result >= 0; @*/;

stack_t stack_new()
/*@ensures \result != NULL; @*/
/*@ensures stack_size(\result) == 0; @*/;

void push(stack_t S, elem x)
/*@requires S != NULL; @*/;
/*@ensures stack_size(S) > 0; @*/;

elem pop(stack_t S)
/*@requires S != NULL; @*/
/*@requires stack_size(S) > 0; @*/;

Note that these generic stacks can only contain pointers, as only pointers can be generic in C1.

Let's do some practice with some generic pointers and function pointers! Implement the function

apply_mystery_binary_fun, which takes in a generic stack S and a binary function mystery,
pops the topmost two elements, applies the mystery function, then pushes the result back onto the

stack.1

typedef int binop_fn(int a, int b);

void apply_mystery_binary_fun(stack_t S, binop_fn* mystery)
//@requires S != NULL && stack_size(S) >= 2;
//@requires mystery != NULL;
//@ensures stack_size(S) >= 1;
{
void* generic_x = ;
//@assert \hastag(,) && ;
int* x = ;

void* generic_y = ;
//@assert \hastag(,) && ;
int* y = ;

;
;

push(S,);
}

1This may remind you of a previous programming assignment...

2

Assume we call apply_mystery_binary_fun with the following values for parameters S and mystery:

What does the memory diagram look like right before we exit the call to apply_mystery_binary_fun?
Complete the following picture. (We omitted the variables generic_x, x, generic_y and y to avoid
cluttering the diagram. You are welcome to do the same.)

3

Hash Dictionaries

A hash dictionary is a data structure that allows us to insert entries to be looked up later. Each

entry in the dictionary is a data item that is associated with a unique key.

In lecture, we discussed how to use our newfound C1 capabilities to implement generic hash dictio-

naries, which can be used for any type of keys and entries. Let's give it a try below!

Farmer Lora is raising a horde of geese to participate in the local Honking CompetitionTM . To

help train her geese for the competition, she needs to keep track of the number of times each goose

honks. Luckily for Lora, she can use a generic hash dictionary to help her do this!

Below is the interface for generic hash dictionaries in C1:

/*************************** Client interface ***************************/

typedef void* entry;
typedef void* key;

typedef key entry_key_fn(entry x) // Supplied by client
/*@requires x != NULL; @*/ ;

typedef int key_hash_fn(key k); // Supplied by client
typedef bool key_equiv_fn(key k1, key k2); // Supplied by client

/**************************** Library interface ****************************/

// typedef ______* hdict_t;

hdict_t hdict_new(int capacity, entry_key_fn* entry_key,
key_hash_fn* hash, key_equiv_fn* equiv)

/*@requires capacity > 0; @*/
/*@requires entry_key != NULL && hash != NULL && equiv != NULL; @*/
/*@ensures \result != NULL; @*/ ;

entry hdict_lookup(hdict_t H, key k)
/*@requires H != NULL; @*/ ;

void hdict_insert(hdict_t H, entry x)
/*@requires H != NULL && x != NULL; @*/ ;

Farmer Lora's geese are represented by structs with the following de�nition.

typedef struct goose_header goose;
struct goose_header {
string name;
int num_honks;

};

4

Checkpoint 1

What should Farmer Lora use for the key and entry in her hash dictionary?

Key:

Entry:

What are their corresponding underlying types? (I.e., what tag would we assert that the keys and

entries have?)

Key:

Entry:

Implement the client-side function goose_key, which takes in an entry and returns its key. Include

su�cient contracts to ensure safety, both in your code and for the caller.

key goose_key(entry e)
//@requires ;
//@ensures ;
{

;
;

return ;
}

Implement the client-side function goose_equiv, which takes in two keys and returns true if they

are equivalent.

Checkpoint 2

Suppose you also have a goose_hash function of type key_hash_fn. Use the function hdict_new
to create a new hash dictionary for storing Lora's geese, with an initial capacity of 122.

Checkpoint 3

Assume we have a hash dictionary H �lled with geese. Implement the function get_num_honks
which, given a dictionary and a goose name, returns the number of honks that goose has honked.

If the goose doesn't exist, the function returns -1.

int get_num_honks(hdict_t H, string name)
//@requires H != NULL;
{

;
;

lookup_result = hdict_lookup();
if (lookup_result == NULL) return -1;
//@assert \hastag(, lookup_result);

;
return ;

}

5

