
15-122: Principles of Imperative Computation Spring 2024

Recitation 04: A Strange Sort of Proof Thursday February 8th

A few lectures ago, we saw an algorithm that sorts an array in time quadratic in the number n of

elements it contains: selection sort. More recently, we discussed how to improve this O(n2) bound
to the much faster O(n log n) bound with mergesort. Today, we'll take a look at the correctness

proof for a short snippet of this algorithm: the merge function. This is a somewhat complex proof,

so be sure to follow along carefully!

Merge Code

1 int[] merge(int[] A, int m, int[] B, int n)
2 //@requires 0 <= m && m <= \length(A);
3 //@requires 0 <= n && n <= \length(B);
4 //@requires is_sorted(A, 0, m) && is_sorted(B, 0, n);
5 //@ensures \length(\result) == m + n;
6 //@ensures is_sorted(\result, 0, m + n);
7 {
8 int[] C = alloc_array(int, m + n);
9 int a_i = 0; // variable used to index array A

10 int b_i = 0; // variable used to index array B
11 int c_i = 0; // variable used to index array C
12

13 while (a_i < m && b_i < n)
14 //@loop_invariant 0 <= a_i && a_i <= m;
15 //@loop_invariant 0 <= b_i && b_i <= n;
16 //@loop_invariant c_i == a_i + b_i;
17 //@loop_invariant 0 <= c_i && c_i <= m + n;
18 //@loop_invariant is_sorted(C, 0, c_i);
19 //@loop_invariant le_segs(C, 0, c_i, A, a_i, m);
20 //@loop_invariant le_segs(C, 0, c_i, B, b_i, n);
21 {
22 if (A[a_i] < B[b_i]) {
23 C[c_i] = A[a_i];
24 a_i++;
25 } else {
26 C[c_i] = B[b_i];
27 b_i++;
28 }
29 c_i++;
30 }
31

32 //@assert a_i == m || b_i == n;
33

34 ... // code for filling in the remaining portions of C -- omitted
35

36 return C;
37 }

© Carnegie Mellon University 2024

To proceed, we will largely follow the same four steps we have used all semester to show correctness

for a function with a loop. We will make one small modi�cation: for EXIT, to work with our

shortened code, we'll be proving the assert on line 32 rather than the postconditions. Below is the

structure we will follow.

1. Prove the loop invariants hold INITially

2. Show that the loop invariants are PREServed

3. Show that the loop TERMinates

4. Prove that the assert on line 32 holds on EXIT

Visualizing the main loop invariants in a diagram will make the rest of the proof much easier to

write. Feel free to use this space for this purpose!

2

Checkpoint 0

Prove that the following loop invariants are initially true.

Line 16: c_i == a_i + b_i

A. by

B. by

C. by

D. by

Line 18: is_sorted(C, 0, c_i)

A. by

B. by

Checkpoint 1

Next, let's prove the preservation of the loop invariant on line 16.

Assumption:

To show:

This proof proceeds by cases.

Case A[a_i] < B[b_i]:

A. by

B. by

C. by

D. by

E. by

Case A[a_i] >= B[b_i]: (take home)

A. by

B. by

C. by

D. by

E. by

Take-home exercise: Provide an argument that shows that none of the quantities a_i, b_i and

c_i can over�ow during an arbitrary iteration of the loop.

3

Checkpoint 2

Now, let's prove the preservation of the loop invariant on line 18. Feel free to use mathematical

notation for the arrayutil.c0 functions, e.g. x > A[0, lo) instead of gt_seg(x, A, 0, lo).
For clarity, we'll also be using C′ to refer to the modi�ed array C after the loop body is executed.

Assumption:

To show:

This proof proceeds by cases.

Case A[a_i] < B[b_i]:

A. by

B. by

C. by

D. by

E. by

F. by

Case A[a_i] >= B[b_i]: (take home)

A. by

B. by

C. by

D. by

E. by

F. by

Checkpoint 3

Prove that the loop terminates.

On each iteration, one of the integer quantities or

decreases by and approaches .

The loop will terminate because .

Checkpoint 4

Below, we will complete a modi�ed EXIT proof that proves the @assert statement on line 32 as

we presented an incomplete version of merge.

To show:

A. by

B. by

C. by

D. by

We're done! This was just a taste of a correctness proof on one of our more complex algorithms.

If you would like more practice, you can download the mergesort code from the course website and

try working through the full correctness proof.

4

https://cs.cmu.edu/~15122/handouts/code/arrayutil.c0

In-Place

A function is in-place if it allocates a constant amount of memory (possibly none) to carry out its

computation. For example, binary search is in-place because it does not allocate any memory. On

the other hand, a function that returns a copy of an array passed to it as input is not in-place as it

needs to create (and return) an array of the same length as its input � which could be an arbitrary

long array.

Is the function merge in-place? ⃝ Yes ⃝ No Why?

Stable Sorting

A sorting algorithm is stable if it preserves the relative order of elements that are the same. For

example, if student records are sorted alphabetically and we resort them by the score they got in

homework 3, a stable sorting algorithm would preserve the alphabetical order of every student who

got the same score.

Consider the following input array (that uses numbers instead of students)

where we use colors and subscripts to distinguish di�erent occurrences of the same elements. Here

are two ways this array could be sorted:

Observe that, in the array on the left, the red 1a is before the blue 1b � like in the input array

� but unlike in the input array the green 2b comes before the purple 2a. A sorting algorithm that

produces this array would not be stable. Instead, in the array on the right, the two 1s and the two

2s occur in the same order as in the input array. A sorting algorithm that always does this is stable.

For mergesort to be stable, the function merge needs to preserve the relative order of the duplicate

elements in its input. Speci�cally, any duplicate element in A[0,n) followed by B[0,m) should

occur in the same order in C[0,n+m).

The given code for merge is not stable. Give an example that shows this

What simple change needs to be made to this code so that it is stable?

5

