Big-O intuition

To the left of n_{0}, the functions can do anything. To its right, $c g(n)$ is always greater than or equal to $f(n)$.

Intuitively, $O(g(n))$ is the set of all functions that $g(n)$ can outpace in the long run (with the help of a constant scaling factor c). For example, n^{2} eventually outpaces $3 n \log (n)+5 n$, so $3 n \log (n)+5 n \in$ $O\left(n^{2}\right)$. Because we only care about long run behavior, we generally can discard constants and can consider only the most significant term in a function.
There are actually infinitely many functions that are in $O(g(n))$: If $f(n) \in O(g(n))$, then $\frac{1}{2} f(n) \in$ $O(g(n))$ and $\frac{1}{4} f(n) \in O(g(n))$ and $2 f(n) \in O(g(n))$. In general, for any constants $k_{1}, k_{2}, k_{1} f(n)+$ $k_{2} \in O(g(n))$.

Big-O definition

The formal definition of big-O has a lot of mathematical symbols in it, and so can be very confusing at first. Let's familiarize ourselves with the formal definition and get an intuition behind what it's saying.
$O(g(n))$ is a set of functions, where $f(n) \in O(g(n))$ if and only if:
there is some \qquad and some \qquad
such that \qquad for all \qquad .
This definition amounts to putting an asymptotic upper bound on $f(n)$.

Checkpoint 0

Using the formal definition of big-O, prove that $n^{3}+9 n^{2}-7 n+2 \in O\left(n^{3}\right)$.
$c=$ \qquad , $n_{0}=$ \qquad
To show: \qquad (expand c and n_{0})
A. $n \geq$ \qquad by assumption
B. \qquad by \qquad
C. \qquad by \qquad
D. \qquad by \qquad
E. \qquad by \qquad
F. \qquad by

Simplest, tightest bounds

Something that will come up often with big-O is the idea of a simple and tight bound on the runtime of a function.
It's technically correct to say that linear search is in $O(3 n+2)$ where n is the length of the input array, but $O(3 n+2)$ consists of the exact same functions as $O(n)$, which is simpler.
It's also technically correct to say that binary search, which takes around $\log n$ steps on an n-element array, is in $O(n!)$, since $n!>\log n$ for all $n>0$ but it's not very useful. If we ask for a tight bound, we want the closest bound you can give. For binary search, $O(\log n)$ is a tight bound because no function that grows more slowly than $\log n$ provides a correct upper bound for binary search.

Unless we specify otherwise, we want the simplest, tightest bound!

Complexity Classes

Big-O sets in simplest and tightest form are used to summarize the complexity of a given function - for example $n^{3}+9 n^{2}-7 n+2 \in O\left(n^{3}\right)$ highlights that $n^{3}+9 n^{2}-7 n+2$ is a cubic function. As such, big-O sets in simplest and tightest form are called complexity classes.
When working with functions with a single argument, say n, the most common complexity classes we will encounter in this course are

$$
O(1) \subset O(\log n) \subset O(n) \subset O(n \log n) \subset O\left(n^{2}\right) \subset O\left(2^{n}\right) \subset O(n!)
$$

Every function in the big-O set on the left of the subset symbol (\subset) is also a function in the big-O set on the right (but not necessarily vice versa) - for example $O(\log n) \subset O(n)$ says that every function in $O(\log n)$ is also in $O(n)$.

We use big-O sets in simplest and tightest form also to classify functions with multiple arguments.

Checkpoint 1

For each of the following big-O sets, give an equivalent big-O set in simplest and tightest form. $O\left(3 n^{2.5}+2 n^{2}\right)$ can be written more simply as \qquad
One interesting consequence of this second result is that $O\left(\log _{i} n\right)=O\left(\log _{j} n\right)$ for all i and j (as long as they're both greater than 1), because of the change of base formula:

$$
\log _{i} n=\frac{\log _{j} n}{\log _{j} i}
$$

But $\frac{1}{\log _{j} i}$ is just a constant! So, it doesn't matter what base we use for logarithms in big-O notation. When we ask for the simplest, tightest bound in big- O, we'll usually take points off if you write, for instance, $O\left(\log _{2} n\right)$ instead of the simpler $O(\log n)$.
$O\left(\log _{10} n+\log _{2}(7 n)\right)$ can be written more simply as \qquad

Checkpoint 2

Give the complexity class of the following functions:
$f(n)=16 n^{2}+5 n+2 \in$ \qquad
$g(n, m)=n^{1.5} \times 16 m \in$ \qquad
$h(x, y)=\max (x, y)+x^{2} \in$

Determining Big-O

Determine the big-O complexity of the following function.

```
int bigO_1(int k)
//@requires k >= 0;
{
    int[] A = alloc_array(int, k); // allocating an k-length array takes O(k) time
    for (int i = 0; i < k; i++) {
        for (int j = 1; j < k; j*=2) {
            A[i] += j;
        }
    }
    int p = 0;
    while (p < 10) {
        f(A, k); //assume f takes O(k) time
        p++;
    }
    return A[k-1];
}
```

Always write your complexity in terms of the input variables!

- Line 4 takes time in O (\quad)
- The loop on lines 5-9 runs \qquad times
- The loop on lines 6-8 runs \qquad times
* Each run of line 7 takes time in O ()

Therefore the loop on lines 6-8 takes time in O ()

Therefore the loop on lines 5-9 takes time in O (\qquad

- Line 10 takes time in O (\qquad
- The loop on lines 11-14 runs \qquad times
- Each run of line 12 takes time in O (\qquad
- Each run of line 13 takes time in O (\quad)

Therefore the loop on lines 11-14 takes time in O (\qquad

- Line 15 takes time in O (\qquad

Thus, the function big0_1 takes time in $O($ \qquad) to run altogether

Checkpoint 3

Determine the big-O class of the following function. You may use the lines on the right for scratch work.

```
int big0_2(int[] L, int m, int n)
//@requires \length(L) == m && m > 0 && n >= 0;
{
    int[] A = alloc_array(int, n); //
    for (int i = 0; i < n; i++) { //
        for (int j = i; j < n; j++) { //
            A[i] = i * j; //
        }
    }
    int c = m-1;
    while (c > 0) {
        L[c] += 122;
        //
        c /= 4;
    }
    return L[m/2];
}
```

The big-O class of this function is \qquad .

