
15-122: Principles of Imperative Computation Spring 2024

Recitation 03: Function Family Reunion Thursday January 25th

Big-O intuition

To the left of n0, the functions can do anything.

To its right, c g(n) is always greater than or equal to f(n).

Intuitively, O(g(n)) is the set of all functions that g(n) can outpace in the long run (with the help of

a constant scaling factor c). For example, n2 eventually outpaces 3n log(n)+5n, so 3n log(n)+5n ∈
O(n2). Because we only care about long run behavior, we generally can discard constants and can

consider only the most signi�cant term in a function.

There are actually in�nitely many functions that are in O(g(n)): If f(n) ∈ O(g(n)), then 1
2f(n) ∈

O(g(n)) and 1
4f(n) ∈ O(g(n)) and 2f(n) ∈ O(g(n)). In general, for any constants k1, k2, k1f(n) +

k2 ∈ O(g(n)).

Big-O de�nition

The formal de�nition of big-O has a lot of mathematical symbols in it, and so can be very confusing

at �rst. Let's familiarize ourselves with the formal de�nition and get an intuition behind what it's

saying.

O(g(n)) is a set of functions, where f(n) ∈ O(g(n)) if and only if:

there is some and some

such that for all .

This de�nition amounts to putting an asymptotic upper bound on f(n).

Checkpoint 0

Using the formal de�nition of big-O, prove that n3 + 9n2 − 7n+ 2 ∈ O(n3).

c = , n0 =

To show: (expand c and n0)

A. n ≥ by assumption

B. by

C. by

D. by

E. by

F. by

© Carnegie Mellon University 2024



Simplest, tightest bounds

Something that will come up often with big-O is the idea of a simple and tight bound on the runtime

of a function.

It's technically correct to say that linear search is in O(3n + 2) where n is the length of the input

array, but O(3n+ 2) consists of the exact same functions as O(n), which is simpler.

It's also technically correct to say that binary search, which takes around log n steps on an n-element

array, is in O(n!), since n! > log n for all n > 0 but it's not very useful. If we ask for a tight bound,

we want the closest bound you can give. For binary search, O(log n) is a tight bound because no

function that grows more slowly than log n provides a correct upper bound for binary search.

Unless we specify otherwise, we want the simplest, tightest bound!

Complexity Classes

Big-O sets in simplest and tightest form are used to summarize the complexity of a given function

� for example n3 +9n2 − 7n+2 ∈ O(n3) highlights that n3 +9n2 − 7n+2 is a cubic function. As

such, big-O sets in simplest and tightest form are called complexity classes.

When working with functions with a single argument, say n, the most common complexity classes

we will encounter in this course are

O(1) ⊂ O(log n) ⊂ O(n) ⊂ O(n log n) ⊂ O(n2) ⊂ O(2n) ⊂ O(n!)

Every function in the big-O set on the left of the subset symbol (⊂) is also a function in the big-O

set on the right (but not necessarily vice versa) � for example O(log n) ⊂ O(n) says that every
function in O(log n) is also in O(n).

We use big-O sets in simplest and tightest form also to classify functions with multiple arguments.

Checkpoint 1

For each of the following big-O sets, give an equivalent big-O set in simplest and tightest form.

O(3n2.5+2n2) can be written more simply as

One interesting consequence of this second result is that O(logi n) = O(logj n) for all i and j (as

long as they're both greater than 1), because of the change of base formula:

logi n =
logj n

logj i

But 1
logj i

is just a constant! So, it doesn't matter what base we use for logarithms in big-O notation.

When we ask for the simplest, tightest bound in big-O, we'll usually take points o� if you write, for

instance, O(log2 n) instead of the simpler O(log n).

O(log10 n+log2(7n)) can be written more simply as

Checkpoint 2

Give the complexity class of the following functions:

f(n) = 16n2+5n+2 ∈
g(n,m) = n1.5×16m ∈
h(x, y) = max(x, y)+x2 ∈
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Determining Big-O

Determine the big-O complexity of the following function.

1 int bigO_1(int k)
2 //@requires k >= 0;
3 {
4 int[] A = alloc_array(int, k); // allocating an k-length array takes O(k) time
5 for (int i = 0; i < k; i++) {
6 for (int j = 1; j < k; j*=2) {
7 A[i] += j;
8 }
9 }

10 int p = 0;
11 while (p < 10) {
12 f(A, k); //assume f takes O(k) time
13 p++;
14 }
15 return A[k-1];
16 }

Always write your complexity in terms of the input variables!

� Line 4 takes time in O( )

� The loop on lines 5�9 runs times

� The loop on lines 6�8 runs times

* Each run of line 7 takes time in O( )

Therefore the loop on lines 6�8 takes time in O( )

Therefore the loop on lines 5�9 takes time in O( )

� Line 10 takes time inO( )

� The loop on lines 11�14 runs times

� Each run of line 12 takes time inO( )

� Each run of line 13 takes time inO( )

Therefore the loop on lines 11�14 takes time inO( )

� Line 15 takes time inO( )

Thus, the function bigO_1 takes time in O( ) to run alto-

gether
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Checkpoint 3

Determine the big-O class of the following function. You may use the lines on the right for scratch

work.

1 int bigO_2(int[] L, int m, int n)
2 //@requires \length(L) == m && m > 0 && n >= 0;
3 {
4 int[] A = alloc_array(int, n); //
5

6 for (int i = 0; i < n; i++) { //
7 for (int j = i; j < n; j++) { //
8 A[i] = i * j; //
9 } //

10 } //
11 int c = m-1; //
12

13 while (c > 0) { //
14 L[c] += 122; //
15 c /= 4; //
16 } //
17 return L[m/2]; //
18 } //

The big-O class of this function is .
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