
15-122: Principles of Imperative Computation Spring 2024

Recitation 02: A Bit About Bytes Thursday January 18th

Binary and decimal representations

Although we typically write numbers in decimal (the base 10 number system), computers represent

all values in binary, in base 2. So it is important to know how to understand numbers written in

both of these representations. The way we interpret 106[10] is as a sum of powers of 10. For example,

106[10] = 1× 102 + 0× 101 + 6× 100

The position of the digit determines the power of 10 used for each term.

Similarly, we interpret a binary number as a sum of powers of 2. For example,

1101010[2] = 1× 26 + 1× 25 + 0× 24 + 1× 23 + 0× 22 + 1× 21 + 0× 20

If we carry out this calculation in decimal, we obtain 106. This provides a simple recipe to convert

between the binary and decimal representations of a number.

To �nd the binary representation of a number written in decimal, we need to take a di�erent route:

we repeatedly divide by 2. The remainder of each step read from bottom to top is its binary

representation. Let's convert 106 back to binary in this way:

106 / 2 = 53 with a remainder of 0 / 2 = with a remainder of

53 / 2 = 26 with a remainder of 1 / 2 = with a remainder of

26 / 2 = 13 with a remainder of 0 / 2 = with a remainder of

13 / 2 = 6 with a remainder of 1 / 2 = with a remainder of

6 / 2 = 3 with a remainder of 0 / 2 = with a remainder of

3 / 2 = 1 with a remainder of 1 / 2 = with a remainder of

1 / 2 = 0 with a remainder of 1 / 2 = with a remainder of

Checkpoint 0

What is the decimal representation of 1111010[2]?

Using the right side of the table above, what is the binary representation of 49[10]?

Although it is important that you are able to do these conversions yourself, there are a number of

good conversion tools online. For example, we like this one for binary to decimal (and more).

Hexadecimal notation

Hexadecimal represents numbers in base 16. Every hex digit corresponds to exactly 4 binary digits

(bits). Thus, a 32-bit int can be written using 8 hex digits. We do so in C0 by using the pre�x 0x:
we enter the hex number 7F2C [16] in C0 as 0x7F2C. The hexadecimal representation allows us to

�see� the bit structure of an int without having to write out 32 1's and 0's. In fact, C0 does not

support writing numbers in binary at all � only hex and decimal are supported.

Hex 0 1 2 3 4 5 6 7 8 9 A B C D E F

Bin. 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

Dec. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Find the hex representation of the binary number 0011111010101101[2].

Find the decimal representation of the hexadecimal number 0x20[16].

Why wouldn't it make sense to write a C0 function that converts hex numbers to decimal numbers?

© Carnegie Mellon University 2024

https://www.rapidtables.com/convert/number/binary-to-decimal.html

Two's complement

So far we have only considered non-negative numbers, but

C0's int type represents integers in the range [−231, 231). C0
uses two's complement to determine which 32-bit int's it con-
siders negative. In two's complement, the most signi�cant bit

has negative place value. The �gure to the right shows how

two's complement partitions the 4-bit numbers into positive

and negative. Note that the leftmost bit is always 1 for neg-

ative numbers and always 0 for positive numbers (and zero).

Because of this, we call this bit the sign bit.

The same can be done for numbers that are represented using

k bits for any value of k, including 32 which is what C0 uses.

To convert a number in two's complement to decimal, we apply

a variant of the powers of 2's method we saw earlier: we make the term for sign bit negative. For

example, in a 4-bit world with two's complement,

1011[2] = 1×−23 + 0× 22 + 1× 21 + 1× 20
⇑

which evaluates to −5[10].

What is the range of the values that can be represented using k bits using two's complement?

Checkpoint 1

Assume you are in a 7-bit world (where numbers are written as 7 bits) that uses two's complement:

What is 1101010[2] in decimal?

What is 0011101[2] in decimal?

Notice that the �rst value you computed here consists of the same binary digits as the example at

the beginning of this recitation, but now that we're in a two's complement world, you interpret the

binary representation di�erently!

Notable Bit Patterns

In C0's 32-bit world, what are (in binary and hex):

int_min: [2], [16]

int_max: [2], [16]

-1: [2], [16]

Remember that in C0, integers are always 32-bits! By using the <util> library, you can enter

int_min and int_max as int_min() and int_max() � note the parentheses.

Checking for over�ow

Because int's are just 32 bits long, numbers that are not in the range [−231, 231) cannot be entered
in C0. Such numbers can however emerge as the result of an arithmetic operation, something that

is called over�ow. For example, 4×230 over�ows since its mathematical value is 232 which is outside

the range [−231, 231).

2

Thus, an over�ow is when the result of evaluating a C0 expression of type int is not the same as

the result we get with true integer arithmetic.

Checkpoint 2

We want to write a function that adds to numbers only when no over�ow can occur and fail a

contract otherwise. Here's our �rst attempt:

int no_overflow_add(int a, int b)
/*@requires (a > 0 && b > 0 && a + b <= int_max())

|| (a < 0 && b < 0 && a + b >= int_min())
|| (a <= 0 && b >= 0)
|| (a >= 0 && b <= 0);

@*/
{
return a + b;

}

This doesn't quite work as intended. Explain what is wrong with the precondition as written. How

would you correct the precondition so that it fails whenever there would be an over�ow?

Bit patterns

In C0, we use 32-bit int's to represent a single integer. However, it's possible to use these 32 bits

to encode other information using the 32 bits of an int.

It makes little sense to use arithmetic operations on such bit patterns (int's we think of as rep-

resenting information other than a single number). Instead, we manipulate bit patterns using a

dedicated set of operations on int's. These are the bitwise operations and the shifts.

What operators to use on a value of type int depends on what we see this value as.

� If we view it as a number, we should exclusively use arithmetic operators on it.

� If instead we view it as a bit pattern, we should manipulate it exclusively with bitwise operators

and shifts.

Bitwise operators

C0 has four bitwise operations. They are called bitwise because they manipulate each bit in an int
independently of the bits around it. Here's how they work on a single bit:

and

& 1 0

1 1 0

0 0 0

or

| 1 0

1 1 1

0 1 0

xor

^ 1 0

1 0 1

0 1 0

complement

~ 1 0

0 1

In C0, the bitwise operators apply to entire int's: they apply the above tables to each of the 32

positions of their operands.

Observe that the bitwise operators ~, & and | work similarly to the logical operators !, && and ||.
They are not interchangeable however: the former operate on values of type int while the latter

operate on values of type bool.

3

https://c0.cs.cmu.edu/docs/c0-libraries.pdf

Checkpoint 3

Assume we are in the 5-bit world.

What does (01101[2] & 10101[2]) | (01010[2] ∧ 10110[2]) evaluate to?

Given a 32-bit int p, write an expression that sets bits 0�7 to 0, sets bits 16�23 to 1, and pre-

serves the remaining bits. For example, for p = 0x12345678, this expression would evaluate to

0x12FF5600.

Shifts

The two shift operators, x << k and x >> k, move bits around an int x. They take an int
understood as a bit pattern and shift it left or right, respectively, by the speci�ed k bits. The left

shift x << k always sets the rightmost k bits of the result to 0. Instead, the right shift x >> k
copies the sign bit of x to the leftmost k bits of the result � this is called sign extension. Here are

some 32-bit world examples:

1101 1111 0101 0010 1101 1111 0101 0010[2] << 9 = 1010 0101 1011 1110 1010 0100 0000 0000[2]
0101 1111 0101 0010 0101 1111 0101 0010[2] >> 9 = 0000 0000 0010 1111 1010 1001 0110 1111[2]
1101 1111 0101 0010 1101 1111 0101 0010[2] >> 9 = 1111 1111 1110 1111 1010 1001 0110 1111[2]

80ABCDEF [16] >> 9 = FFC055E6[16]

For either shift to be valid, the shift amount k must be between 0 (inclusive) and the number of

bits in the representation, 32 here (exclusive).

Mixing bitwise and arithmetic operators

We said earlier that int's seen as numbers should be manipulated exclusively with arithmetic

operators, while int's seen as bit patterns should be manipulated exclusively with bitwise operators

and shifts.

There are very few exceptions to this rule. One is when using the left shift operation to quickly

compute powers of two. It leverages this property:

x << k = x× 2k

(The right shift corresponds to a variant of division that always rounds towards negative in�nity.)

Another exception is when we are dealing with numbers but are interested in aspects of their binary

representation, like the value of the sign bit.

4

Checkpoint 4

Write a function that returns 1 if the sign bit is 1, and 0 otherwise. That is, write a function that

returns the sign bit shifted to be the least signi�cant bit. Your solution can use any of the bitwise

operators, but will not need all of them.

int get_sign_bit(int x)
//@ensures \result == 0 || \result == 1;
{
return ;

}

Fun facts about integers. . .

. . . that may come handy.

� int_max() + 1 == int_min()

� int_min() - 1 == int_max()

� -int_min() == int_min()

� -x == ~x + 1

Take-home exercise: prove that each of the above equalties hold in two's complement.

5

