
15-122 Programming Homework 9 Page 1 of 14

15-122: Principles of Imperative Computation, Spring 2024

Programming Homework 9: Hu�man Compression

Due: Thursday 28th March, 2024 by 9pm

In this programming assignment, we will progressively develop a C program to compress (and
uncompress) �les � something similar to applications like pkzip/pkunzip or gzip/gunzip
which you may have used. Like these applications, your program will be able to handle
inputs as short as a tweet and as long as the collected works of William Shakespeare, and
it won't be limited to just text �les. Along the way, we will see how trees can play a role
in data compression and why they need to be supplemented with other data structures to
achieve good performance. We will also take a quick peek at �le input/output in C.

Download the assignment handout from the course website. The �le README.txt in the code
handout goes over the contents of the handout and explains how to hand the assignment
in. There is a TEN (10) PENALTY-FREE HANDIN LIMIT. Every additional handin will
incur a small (5%) penalty (even if using a late day). Your score for this assignment will be
the score of your last Autolab submission.

Notes:

� Di�erently from previous assignments, the starter code contains object-code �les (end-
ing in a .o extension) instead of C source �les. To compile and run your code, you
must be logged in on a unix.andrew.cmu.edu machine.

� This assignment will not be graded for style. However you will �nd it helpful to apply
the good style habits you have developed: reasonable contracts, at most 80-character
lines, and comments that make it clear to a reader how your algorithm works and what
invariants you expect to hold. You should use the libraries provided for you to make
your code simple and clear. We expect you to write your own helper functions when
appropriate. Bad style will have no direct e�ect on your grade but will make your life
harder.

� Be sure to include appropriate REQUIRES, ENSURES, and ASSERT annotations in your
code. If you write any auxiliary functions, include precise and appropriate pre- and
post-conditions. You should write these as you are writing the code rather than after
you're done: documenting your code as you go along will help you reason about what
it should be doing, and thus help you write code that is both clearer and more correct.

� This assignment makes use of many types de�ned in various header �les. We suggest
that, as you encounter them, you write them down somewhere convenient so that you
can quickly refer to their de�nition.

� Be careful that all the memory you allocated is freed by the end of a normal execution
(you do not need to do so for abnormal exits, like when encountering an error condition

© Carnegie Mellon University 2024

https://autolab.andrew.cmu.edu/courses/15122-s24/


15-122 Programming Homework 9 Page 2 of 14

or a contract violations). We will use valgrind to check for memory leaks and safety
violations . . . and so should you.

Data Compression: Overview

Whenever we represent data in a computer, we have to choose some sort of encoding with
which to express it in binary. When representing strings in C0, for instance, we use ASCII
codes to represent the individual characters. Other encodings are possible as well. For exam-
ple, the UNICODE standard de�nes several character encodings with a variety of di�erent
properties. The simplest, UTF-32, uses 32 bits per character.

Under the extended ASCII encoding, each character is represented using 8 bits, so a string
of length n requires 8n bits of storage. For example, consider the string "free coffee". It
is represented as the following 11× 8 = 88 bits in ASCII:

01100110 01110010 01100101 01100101 00100000 01100011 01101111
f r e e c o

01100110 01100110 01100101 01100101
f f e e

(The spaces around the ASCII code of each letter are shown to ease readability: they are
not part of the encoding of this string. Also, 00100000 is the ASCII code of the space
character.)

This encoding of the string is rather wasteful, though. In fact, since there are only
6 distinct characters in the string (including the space character), we should be able to
represent it using a custom encoding that uses only ⌈log 6⌉ = 3 bits to represent each
character. If we were to use the following custom encoding:

Character Code

’c’ 000
’e’ 001
’f’ 010
’o’ 011
’r’ 100
’ ’ 101

the string would be represented with only 11× 3 = 33 bits:

010 100 001 001 101 000 011 010 010 001 001
f r e e c o f f e e

By using this custom encoding, we have saved (88− 33)/88 = 62% of the space used by the
standard ASCII representation of the above string.1

Can we do even better? Our custom encoding uses the same number of bits for each
character � it is a �xed-length encoding. But in our input string, the letter e occurs much

1Well, almost: we would also need to store the encoding itself so that we can recover the string � more

on this later.

© Carnegie Mellon University 2024



15-122 Programming Homework 9 Page 3 of 14

more frequently than c for instance. It may be worthwhile to use a smaller bit pattern to
encode the character e even at the expense of having to use longer bit patterns to encode c.
Our next encoding � a variable-length encoding � embraces this idea:

Character Code

’c’ 1101
’e’ 0
’f’ 10
’o’ 1110
’r’ 1111
’ ’ 1100

Using it, the string "free coffee" is represented as follows:

10 1111 0 0 1100 1101 1110 10 10 0 0
f r e e c o f f e e

That's just 26 bits, for a (88− 26)/88 = 70% space saving.
For a variable-length encoding to be viable, there needs to be a simple way to go from

a bit string like the above to the original text. One such way is for the encoding to be
pre�x-free: no code word is a pre�x of any other code word. Both our encodings are pre�x-
free: in the last one, for example, if a bit string starts with 10, the �rst character of the
corresponding text must be f because no other character encoding starts with 10.

It can be proven that this encoding is optimal for this particular string: no other pre�x-
free encoding can represent the string using fewer than 26 bits. Moreover, the encoding
is optimal for any string that has the same distribution of characters as the sample text.
In this assignment, you will implement a method for constructing such optimal encodings
developed by David Hu�man.

Hu�man Coding: A Brief History

Hu�man coding is an algorithm for constructing optimal pre�x-free encodings given a fre-
quency distribution over characters. It was developed in 1951 by David Hu�man when he
was a Ph.D student at MIT taking a course on information theory taught by Robert Fano.
It was towards the end of the semester, and Fano had given his students a choice: they could
either take a �nal exam to demonstrate mastery of the material, or they could write a term
paper on something pertinent to information theory. Fano suggested a number of possible
topics, one of which was e�cient binary encodings: while Fano himself had worked on the
subject with his colleague Claude Shannon, it was not known at the time how to e�ciently
construct optimal encodings.

Hu�man struggled for some time to make headway on the problem and was about to
give up and start studying for the �nal when he hit upon a key insight and invented the
algorithm that bears his name, thus outdoing his professor, making history, and attaining
an �A� for the course. Today, Hu�man coding enjoys a variety of applications: it is used as
part of the DEFLATE algorithm for producing ZIP �les and as part of several multimedia
codecs like JPEG and MP3.

© Carnegie Mellon University 2024



15-122 Programming Homework 9 Page 4 of 14

1 Hu�man Trees

Pre�x-free encodings � where no code word is a pre�x of any other code word � can
be represented as binary trees with characters stored at the leaves: a branch to the left
corresponds to a 0 bit and a branch to the right corresponds to a 1 bit, so that the path
from the root to a leaf gives the code word for the character stored at that leaf.

For instance, the �xed-length and variable-length encodings shown earlier � both being
pre�x-free � are represented by the following two binary trees, respectively.

In the tree on the right, which corresponds to our variable-length encoding, frequently-
occurring characters have shorter paths from the root. We can see this property clearly
if we label each subtree with the total frequency of the characters occurring at its leaves.
The frequencies in the following tree are based on the sample string "free coffee". A
frequency-annotated tree is called a Hu�man tree.

© Carnegie Mellon University 2024



15-122 Programming Homework 9 Page 5 of 14

Hu�man trees have a recursive structure: a Hu�man tree is either a leaf containing a
character and its frequency, or an interior node containing the combined frequency of two
child Hu�man trees. We draw the leaves, which contain character data, as rectangles to
distinguish them from the interior nodes, which we draw as circles.

We represent both kinds of Hu�man tree nodes in C using a struct htree_node, ab-
breviated as the type htree:

typedef struct htree_node htree;
struct htree_node {
symbol_t value;
unsigned int frequency;
htree *left;
htree *right;

};

The value �eld of a leaf contains a character and is irrelevant for interior nodes. Interior
nodes should have exactly two children. In view of generalizing our encoding from strings of
printable characters to arbitrary data, we draw value from the type symbol_t of symbols.
symbol_t is an unsigned integer type, making it suitable to index arrays by symbols. Within
this type, the symbols we may want to represent are in the range [0, NUM_SYMBOLS).

The well-formedness criteria of Hu�man trees give rise to the following recursive de�ni-
tions:

� An htree is a valid htree if it is non-NULL and it is either a valid htree leaf or a valid

htree interior node.

� An htree is a valid htree leaf if its frequency is strictly positive, and left and right
children are NULL.

� An htree is a valid htree interior node if its left and right children are valid htrees,
and its frequency is the sum of the frequency of its children.

Task 1 (2 points) In �le huffman.c, implement the following functions that formalize the
Hu�man tree data structure invariants:

Function: Returns true i�...

bool is_htree_leaf(htree *H); the node is a leaf
bool is_htree_interior(htree *H); the node is an interior node
bool is_htree(htree *H); the tree is a Hu�man tree

You may test your code by hand-building various htree's in �le test-htree.c. Compile
your work with� �
% make htree� �
and then run your tests with� �
% ./test-htree� �
The next tasks will further exercise your speci�cation functions.

© Carnegie Mellon University 2024



15-122 Programming Homework 9 Page 6 of 14

2 Constructing Hu�man Trees

Hu�man's key insight was to use the frequencies of symbols to build an optimal encoding
tree from the bottom up. Given a set of symbols and their associated frequencies, we can
build an optimal Hu�man tree as follows:

1. Construct leaf Hu�man trees for each symbol/frequency pair.

2. Repeatedly choose two minimum-frequency Hu�man trees and join them together into
a new Hu�man tree whose frequency is the sum of their frequencies.

3. When only one Hu�man tree remains, it represents an optimal encoding.

This is an example of a greedy algorithm since it makes locally optimal choices that neverthe-
less yield a globally optimal result at the end of the day. Selection of a minimum-frequency
tree in step 2 can be accomplished using a priority queue.

A priority queue is a queue-like data structure where elements are retrieved based on
their priority : higher priority elements are removed �rst. The priority of an element is
determined by a priority function, of type has_higher_priority_fn de�ned as follows:

// f(x,y) returns true if e1 is STRICTLY higher priority than e2
typedef bool has_higher_priority_fn(elem e1, elem e2)

/*@requires e1 != NULL && e2 != NULL; @*/ ;

When creating a priority queue, a priority function is given which determines whether an
element has higher priority than another. An interface to generic priority queues can be
found in lib/pq.h.

A sample run of the algorithm is shown on page 7. Note that this isn't the only Hu�man
tree we could've constructed from these frequencies � whenever two frequencies were the
same we broke the tie arbitrarily. Likewise, which is the left child and which is the right can
be chosen arbitrarily.

Task 2 (5 points) In �le huffman.c, write a function

htree* build_htree(freqtable_t table);

that constructs an optimal encoding for an alphabet with NUM_SYMBOLS symbols using Hu�-
man's algorithm. The frequency table table, of type freqtable_t, is an unsigned integer
array of length NUM_SYMBOLS. The entry table[c] contains the reported frequency of sym-
bol c. Recall that, in C, a char is a one-byte integer type that represents the ASCII value
of the character it corresponds to. This means that we can use characters as indices in an
array (for example, table[’a’] is the same as table[97] since a has ASCII value 97).
The entry table[c] may be 0 if c is not expected to occur in a text (for example if c is
a non-printable ASCII character and we are only interested in encoding text �les). See �le
freqtable.h.

Use the code in the included lib/pq.h as your implementation of priority queues.

Two observations:

� Hu�man trees for a frequency table with just one symbol are not particularly useful,
because the optimal encoding of a single symbol would be the empty bit string. But

© Carnegie Mellon University 2024



15-122 Programming Homework 9 Page 7 of 14

© Carnegie Mellon University 2024



15-122 Programming Homework 9 Page 8 of 14

the source strings, all of which must just repeat the same symbol, would be mapped
to the same empty string. Therefore, build_htree must signal an error (by calling
the error function) if there are fewer than two symbols with non-zero frequency, and
otherwise return an interior node as a result.

� Hu�man trees are not unique due to symmetries, additionally complicated by the
fact that multiple symbols or subtrees might have identical frequencies. All possible
valid Hu�man codes for a given text will have the same length (due to its optimality
guarantee) but may otherwise be di�erent. So the particular codes produced in your
implementation may look di�erent from the ones shown in this writeup.

The directory data/freq contains a number of frequency �les, which have a textual repre-
sentation format� �

<symbol 1>:<frequency 1>
<symbol 2>:<frequency 2>
...� �

where the symbol is separated from the frequency by a colon ’:’. Each <symbol n> is
either a printable ASCII character (like A) or an hexadecimal number of the form 0xnn (like
0x41). By convention, frequency �les have a .frq extension. Take a look the frequency �le
for our ongoing example at data/freq/free_coffee.frq.

You can test your implementation by compiling your code with� �
% make� �
and then running� �
% ./huff-safe -f <freq_file> -R� �
The command-line �ag -R instructs huff-safe to print the htree it has built from fre-
quency �le <freq_file>. Use the additional �ag -Q to also display the frequency table in
<freq_file>.

For instance, to test your code with our ongoing example, you would type:� �
% ./huff-safe -f data/freq/free_coffee.frq -R� �
or, if you want to display the frequency table,� �
% ./huff-safe -f data/freq/free_coffee.frq -R -Q� �

© Carnegie Mellon University 2024



15-122 Programming Homework 9 Page 9 of 14

3 Decoding Bit Strings

The Hu�man encoding of a text using a Hu�man tree that accounts for all of the symbols
in it is a bit string that replaces each symbol with its Hu�man code. We will see how to
e�ciently carry out such encoding shortly. One thing we can do right away is decode a bit
string using the very Hu�man tree that was used to encode it.

Given an encoded bit string and the Hu�man tree that was used to encode it, we decode
the bit string as follows:

1. Initialize a pointer to the root of the Hu�man tree.

2. Repeatedly read bits from the bit string and update the pointer: when you read a 0,
follow the left branch, and when you read a 1, follow the right branch.

3. Whenever you reach a leaf, output the symbol at that leaf and reset the pointer to the
root of the Hu�man tree.

If the bit string was properly encoded, then when all of the bits are exhausted, the pointer
should once again point to the root of the Hu�man tree. If this is not the case, then the
decoding fails for the given input.

As an example, we can use our on-going encoding to decode the following message:

1 1 0 1 1 1 1 0 1 0 1 0 0 0 1 1 0 0 1 0 1 1 1 0 1 1 1 1 1 1 0 0 1 0 1 1 1 1 0 0
c o f f e e f o r f r e e

Task 3 (8 points) In �le huffman.c, implement the decode function

symbol_t* decode_src(htree *H, bit_t *code, size_t *src_len);

This function takes in a bit string code (details below) and the Hu�man tree H to decode
it with. It returns an array of symbols decoded from code using H. The last argument,
the pointer src_len, is used by the function to communicate to the caller the length of the
returned array. Of the several ways to approach this function, we suggest you do two passes
on the input, one pass to determine the length of the array to return, and a second pass to
populate it.

The function should return the decoded bit string if the string can be decoded and should
signal an error otherwise, using the error function.

For your convenience, the bit string code is a (NUL-terminated) C string of the ASCII
characters ’0’ and ’1’ � not a great choice for �le compression but good enough for the
time being. We call this representation of bit strings �binascii�.

After compiling your code using make, you can test it by running� �
% ./huff-safe -D -a <binascii_file> -r <htree_file>� �
This asks huff-safe to use your src_decode function to decode the binascii string in
�le <binascii_file> using the Hu�man tree in �le <htree_file>. The decoded text
will be printed on the terminal, together with some statistics. The handout directory
data/binascii contains sample binascii �les with extension .01. Hu�man tree �les have
the format

© Carnegie Mellon University 2024



15-122 Programming Homework 9 Page 10 of 14

� �
<symbol 1>:<Huffman code 1>
<symbol 2>:<Huffman code 2>
...� �

You can �nd a few Hu�man tree �les, with extension .htr, in directory data/htree (and
you can make your own � but make sure that they correspond to valid Hu�man trees!). As
usual, you can use the �ags -Q and -R to display the frequency table and the Hu�man tree
if you wish. Additionally, the -V �ag will display the encoded and decoded texts in lockstep
for ease of debugging.

Thus, to test your src_decode on our ongoing example, you would run� �
% ./huff-safe -D -a data/binascii/free_coffee.01 -r data/htree/free_coffee.htr� �
which should result in the string "free coffee" being printed on the terminal.

4 Encoding Strings

To encode a text using a Hu�man tree appropriate for it, we need to replace each symbol in
it with its Hu�man code. One way to do this is to traverse the entire tree for each symbol
in the text: for a tree containing n symbols, that's O(n) for each traversal � check it out
� so that encoding a text of length m would take O(nm).

A smarter way to proceed is to build an auxiliary data structure that allows us to retrieve
the Hu�man code of each symbol in constant time � like the table on page 3. We use an
array with NUM_SYMBOLS entries, each containing the NUL-terminated bit string code of one
of the symbols (or NULL if this symbol is not in our Hu�man tree). A single traversal of
the Hu�man tree is su�cient to populate this code table, and from then on a constant-time
array access gives us the Hu�man encoding of each input symbol. The price we pay for this
gain in e�ciency is extra memory to store the code table � typically a worthy trade-o�.

Task 4 (3 points) In �le huffman.c, write the function

codetable_t htree_to_codetable(htree *H);

mapping Hu�man trees to their code tables. We recommend a recursive approach with heap-

allocated strings. Feel free to use the built-in <string.h> library � google it. The type
codetable_t, de�ned in �le htree.h, is an array of (NUL-terminated) bit_t*. This array
has size NUM_SYMBOLS.

You can test your code by running� �
% ./huff-safe -f <freq_file> -T� �
where the �ag -T prints the code table of the Hu�man tree constructed from frequency �le
<freq_file>. Doing so on our ongoing example takes the form� �
% ./huff-safe -f data/freq/free_coffee.frq -T� �

© Carnegie Mellon University 2024



15-122 Programming Homework 9 Page 11 of 14

Finally, we are ready to write the encoding function.

Task 5 (3 points) In the same �le, write a function

bit_t* encode_src(codetable_t table, symbol_t *src, size_t src_len);

that e�ciently encodes src of length src_len using code table table. This function returns
the resulting binascii bit string (recall that these are NULL-terminated). Again, you may want
to consider a two-pass implementation.

The function should return the encoded bit string if the string can be encoded and should
signal an error otherwise, using the error function.

You can test your code by running� �
% ./huff-safe -E -s <source_file> -f <freq_file>� �
This will use your encode_src to return the binascii encoding the �le <source_file> using
frequency �le <freq_file>, together with some statistics. The frequency �le corresponding
to sample texts in directory data/source have a similar name with a .frq extension in
directory data/freq. Supplying the usual -Q, -R, -T, and/or -V �ags will provide additional
information were you to need it. Doing this on our ongoing example takes the form� �
% ./huff-safe -E -s data/source/free_coffee.txt -f data/freq/free_coffee.frq� �
You can save the encoded text by supplying a -a <binascii_file>. If you do so, the
invocation� �
% ./huff-safe -D -a <binascii_file> -f <freq_file>� �
should give you back the contents of <source_file>. Try that!

© Carnegie Mellon University 2024



15-122 Programming Homework 9 Page 12 of 14

5 Basic Input/Output in C

Up to now, symbol frequencies are independent from the source �les they are used to encode.
To compress a �le the way pkzip does it, we need to draw the symbol frequencies from this
very �le. This task gives us an opportunity to learn a bit about �le input/output in C. In
truth, we will be just scratching the surface of this far-ranging topic, but we need to start
somewhere.

In a C program, we read and write to a �le via a �le descriptor, a pointer of type FILE*.
We obtain a �le descriptor by calling the function fopen(fname, mode) where fname is
the path of the �le we want to work with, and mode is a string with which we tell fopen
whether we want to read from ("r") or write to ("w") this �le. Once we are done using the
�le, we need to close its descriptor using the function fclose(descr).

The function fgetc(descr) reads the next character from the �le with descriptor descr.
But there may be no next character if we have reached the end of the �le! In that case it
will return the special value EOF.

As a summary, here are the (slightly simpli�ed) prototypes of the above functions:

FILE *fopen(char *fname, char *mode);
void fclose(FILE *desc);
int fgetc(FILE *descr);

You can read more about �le I/O in C by researching the library <stdio.h>.

Task 6 (1 point) In �le huffman.c, write the function

freqtable_t build_freqtable(char *fname);

which returns the frequency table of the symbols in �le fname.

You can test this function by running� �
% ./huff-safe -F -s <source_file>� �
For example,� �
% ./huff-safe -F -s data/source/free_coffee.txt� �
In fact, you can now test your encode_src by running� �
% ./huff-safe -E -s <source_file>� �
It will use your build_freqtable to compute the frequency table of <source_file> rather
than reading it from a frequency �le. This is done as follows for our ongoing example:� �
% ./huff-safe -E -s data/source/free_coffee.txt� �

© Carnegie Mellon University 2024



15-122 Programming Homework 9 Page 13 of 14

6 Packing Bits into Bytes

Our goal for this assignment is to perform actual �le compression, but binascii uses a whole
byte to represent each bit. Your next task will be to compress a binascii bit string into actual
binary.

Task 7 (2 points) In �le huffman.c, implement the functions

uint8_t* pack(bit_t *bits);
bit_t* unpack(uint8_t *c, size_t len);

pack(bits) returns an array of bytes (type uint8_t) where each ’0’ in bits is shrunk
into a 0-bit and each ’1’ into a 1-bit. The �rst digit in bits will be the most signi�cant bit
of the �rst byte of the result. If the size of bits is not divisible by 8, the last byte is padded
with 0-bits. For example, pack returns the 4-byte array BCCDEA00 (here in hexadecimal) on
our binascii encoding of "free coffee":

1 0 1 1︸ ︷︷ ︸
B

1 1 0 0︸ ︷︷ ︸
C

1 1 0 0︸ ︷︷ ︸
C

1 1 0 1︸ ︷︷ ︸
D

1 1 1 0︸ ︷︷ ︸
E

1 0 1 0︸ ︷︷ ︸
A

0 0︸ ︷︷ ︸
0

︸ ︷︷ ︸
0

where the last six bits have been padded with zeros.
Conversely, unpack(bytes, len) converts each bit in the byte array bytes of length

len into a NUL-terminated binascii string. For example, calling unpack on the byte array
DEA32EFCDA (written in hex) of length 5 yields:

D︷ ︸︸ ︷
1 1 0 1

E︷ ︸︸ ︷
1 1 1 0

A︷ ︸︸ ︷
1 0 1 0

3︷ ︸︸ ︷
0 0 1 1

2︷ ︸︸ ︷
0 0 1 0

E︷ ︸︸ ︷
1 1 1 0

F︷ ︸︸ ︷
1 1 1 1

C︷ ︸︸ ︷
1 1 0 0

D︷ ︸︸ ︷
1 1 0 1

A︷ ︸︸ ︷
1 0 1 0 \0

where the rightmost symbol in the output is the NUL terminator.

You may �nd it useful to write helper functions that pack/unpack a single byte. Also,
the function num_padded_bytes, described in �le bitpacking.h, may come handy.

We encourage you to write standalone tests for pack and unpack, similarly to what you
did for is_htree in task 1. The starter �le is test-pack.c and the compilation command
is make pack.

You can test your code thoroughly by performing actual compression and uncompression
on �les:� �
% ./huff-safe -C -s <source_file> -h <compressed_file>� �
uses the code you have developed in this assignment to compress <source_file> writing
the result into <compressed_file>. This �le contains both a code table extracted from
<source_file> and the packed Hu�man encoding of its contents. The compression ratio,
i.e., the space savings, will be printed to terminal. You can supply the �ags we have encoun-
tered so far to display various information. Thus, to compress our ongoing example into the
�le my_first_compression.hip, you would type� �
% ./huff-safe -C -s data/source/free_coffee.txt -h my_first_compression.hip� �

© Carnegie Mellon University 2024



15-122 Programming Homework 9 Page 14 of 14

You can use any �le you want as the source �le, but if you try it out on very large �les, you
will want to compile your code with make fast and use huff-fast instead of huff-safe.
Do so only after you are sure your code works properly as it disables all annotations!

You can compress binary �les, for example images, but doing so may not save all that
much space � you may even get a negative compression ratio since the compressed �le
embeds the code table of your source �le!

Now the real test. You can uncompress a compressed �le by running� �
% ./huff-safe -U -h <compressed_file>� �
to display the corresponding source to terminal. So, the call� �
% ./huff-safe -U -h my_first_compression.hip� �
should print "free coffee" together with some statistics.

Add the argument -s <file> to dump the result to <file> instead, which will be helpful
if the original source was very large or binary. The usual �ags are available for your perusal.

For testing purposes, we provide a number of compressed �les (with extension .hip) in
directory data/compressed. Uncompress them and check that they are identical to the
corresponding source �les in directory data/source by using the Unix diff utility.

7 The Ultimate Test

How much con�dence do you have in your implementation? Are you willing to submit your
work in compressed form? That's exactly what you will need to do to get the last point of
this assignment.

Task 8 (1 point) Compress your submission, �le huffman.c, into a �le named huffman.c.hip
and submit this �le to Autolab.

We will use our code to decompress it and then grade what comes out. If decompression
fails, or the result are not a valid C �le, you will get a 0 for the whole assignment. Don't panic
though: if you tested your code vigorously for all prior tasks and it worked as expected, the
odds of this happening are very low. Moreover, you can always look at the Autolab output
and make a regular submission if it reports a failed decompression.

© Carnegie Mellon University 2024

https://autolab.andrew.cmu.edu/courses/15122-s24/

	Huffman Trees
	Constructing Huffman Trees
	Decoding Bit Strings
	Encoding Strings
	Basic Input/Output in C
	Packing Bits into Bytes
	The Ultimate Test

