
15-122 Programming Homework 7 Page 1 of 10

15-122: Principles of Imperative Computation, Spring 2024

Programming Homework 7: Bloom Filters

Due: Thursday 14th March, 2024 by 9pm

In this assignment, you will implement a variation of hash-table-based sets, called Bloom

�lters, and explore some of the applications of Bloom �lters.

Download the assignment handout from the course website or Autolab.. The �le README.txt
in the code handout goes over the contents of the handout and explains how to hand the
assignment in. There is a SEVEN (7) PENALTY-FREE HANDIN LIMIT. Every additional
handin will incur a small (5%) penalty (even if using a late day). Your score for this
assignment will be the score of your last Autolab submission.

To help you write test cases for Task 1, which we want you to do before starting on the
later tasks, there will be a separate, uno�cial �Bloom Filter Test Case Checker� Autolab
assignment. This will only run the part of the autograder that checks Task 1. There is no
handin limit for that uno�cial autograder. Check the README.txt �le carefully for details.

© Carnegie Mellon University 2024

https://cs.cmu.edu/~15122
https://autolab.andrew.cmu.edu/courses/15122-s24/
https://autolab.andrew.cmu.edu/courses/15122-s24/


15-122 Programming Homework 7 Page 2 of 10

1 Bloom Filters

Fundamentally, Bloom �lters are an implementation of the set interface discussed in the
lecture handout:

// typedef ______* bloom_t;

bloom_t bloom_new(int capacity)
/*@requires 0 < capacity; @*/
/*@ensures \result != NULL; @*/ ;

bool bloom_contains(bloom_t B, string x)
/*@requires B != NULL; @*/ ;

void bloom_add(bloom_t B, string x)
/*@requires B != NULL; @*/
/*@ensures bloom_contains(B, x); @*/ ;

The one interesting twist is that the bloom_contains function is allowed to return false

positives. If the Bloom �lter says that something is not in the set, it has to be right, but
if it says that something is in the set, it can be wrong. To put it a di�erent way, a Bloom
�lter answers the question �is x in the set?� with either the answer �no� or �maybe.�

Here's a summary of how the output of bloom_contains(B,x) may relate to whether
x is in B:

x is in B x is not in B

bloom_contains(B,x) returns true SOMETIMES

(true positive)

SOMETIMES!?

(false positive)

bloom_contains(B,x) returns false NEVER

(false negative)

ALWAYS

(true negative)

The words in all-caps describe when each combination happens. As you can see, false nega-
tives (SOMETIMES!?) are problematic: xmay not yet be in B, and yet bloom_contains(B,x)
returns true.

Try to think of a couple of obvious and possibly silly ways you could implement this
interface before you continue reading.

There are a lot of possible correct implementations of the interface we gave on the previous
page. One always returns true, signaling �maybe x is in the set.� You've been provided with
this implementation in bloom-worst.c0, and it is, according to the description we gave, a
correct implementation. It is also very fast and uses very little space! It is terrible in every
other possible way.

At the other end of the spectrum, you could implement a proper set. You have the tools
to do this in a couple of ways: unbounded arrays (sorted or not), linked lists, and hash tables.
You have been provided with one such implementation in bloom-expensive.c0. Such an
implementation will only signal �maybe x is in the set� when x is really, actually in the set.

© Carnegie Mellon University 2024



15-122 Programming Homework 7 Page 3 of 10

This is �ne, but it ends up using lots of memory, and what's more, the implementation you
were given is quite slow.

The implementations we're going to explore in this assignment will be in-between: they
use less memory than a real hash table, but give fewer false positives than a completely
non-committal implementation. Before we talk about how to do this, and before we go and
do it, let's write some tests!

1.1 Testing Bloom Filters

Task 1 (6 points) In �le bloom-test.c0, write a testing program that respects the in-
terface on the previous page. It should serve two purposes:

� The testing program should attempt to raise an assertion error on any incorrect im-
plementation of the interface.

� On any correct implementation of the Bloom �lter interface, the main() function
should return a performance score from 0 and 100 (inclusive).

� On the worst possible Bloom �lter implementation described above, the perfor-
mance score should be 0.

� On an �error free� Bloom �lter implementation (such as an actual hash table),
the performance score should be 100.

� On any Bloom �lter implementation that has some false positives and some (true)
negatives, the performance score should be between 0 and 100.

We ask that you do not call bloom_new with a capacity greater than int_max()/16.

Generally speaking, worse implementations should have lower performance scores. You
will be graded in part based on whether your tests are able to distinguish relatively bad (but
not pessimal) implementations from relatively good (but not perfect) ones.

An idea to keep in mind when you are writing your tests is that Bloom �lters, like hash
tables, have a load factor. If n is the total number of distinct elements that have been
inserted and m is the table size that was set by bloom_new(m), then the load factor is
n/m. We will generally expect lots of false positives when the load factor exceeds 1, and
vastly fewer false positives when the load factor is much smaller than 1.

You are strongly encouraged to go ahead and submit to the Autolab using the uno�cial
�Bloom Filter Test Case Checker� autograder before you move on from this task.

© Carnegie Mellon University 2024



15-122 Programming Homework 7 Page 4 of 10

1.2 Using Bloom Filters

This section contains motivation for when Bloom �lters may come in handy. It may help you
with ideas as you're writing test cases, but it's not essential for the rest of the assignment.

Our goal in this assignment will be to develop high-performing Bloom �lter: one that
return false as often as possible while using much less memory than a fully-correct set
implementation must use. When can such a data structure be useful?

Simple Rules, Expensive Exceptions When dealing with human concepts like lan-
guage, maps, tra�c law, or time zones, it's sometimes possible to write a simple algorithm
that usually gives the right answer. However, these simple algorithms almost always have to
be augmented with extensive databases containing the idiosyncratic exceptions. A Bloom
�lter can record all the places where our simplistic algorithm doesn't return the right answer.
Then, we can quickly ask the Bloom �lter �is this one of the exceptions where the simple
algorithm doesn't work?� If the answer is �no,� we use our simple algorithm. If the answer
is �maybe,� then we look it up in our carefully-maintained database.

Human language was one of the original motivating examples for Bloom �lters.1 Burton
Bloom imagined an extensive database of rules for hyphenating English words in a text
editor. A Bloom �lter could capture all the words that can't be hyphenated automatically
with a simple algorithm, requiring a database lookup.

Fast First Passes If you've ever used a full-featured text editor like Microsoft Word,
you've probably had the experience of watching as the spell checker highlights all the mis-
spelled words in a document. A Bloom �lter could speed up this process by storing all the
correctly-spelled words in a dictionary. On the �rst pass, Word could report misspellings
only when the Bloom �lter says a word de�nitely isn't spelled correctly. Then the maybe-
correctly-spelled words can be checked in a second pass to weed out the false positives. In
this case, false positives would be incorrectly-spelled words that the Bloom �lter did not �ag
as misspelled.

Making sure that a user doesn't pick a password that is known to be compromised is
another application of Bloom �lters that falls in this category. You will be implementing it
in Section 4 of this assignment.

One-Hit Wonders Wikipedia describes several additional use cases for Bloom �lters.2

Services like Akamai or Net�ix try to store copies of frequently-used content physically close
to users, but they have limited storage space.

Due to the way people use such services, a good rule in practice is that, if two people
in the same region request the same content, it's worth storing a copy of that content near
them. This means that �one-hit wonders�, content that only one person wants to view,
doesn't make use of valuable storage space.

A Bloom �lter can help with this problem by storing all the recent requests for content.
Whenever new content is requested, the Bloom �lter is asked whether anybody else recently
requested that material. If the Bloom �lter says �maybe,� then the server assumes this is
the second request and stores it. False positives mean that some one-hit wonders get stored,
but the trade-o� is sometimes worth it.

1Bloom, Burton H. �Space/time trade-o�s in hash coding with allowable errors.� Communications of the
ACM, Volume 13 Issue 7, July 1970.

2https://en.wikipedia.org/wiki/Bloom_filter

© Carnegie Mellon University 2024

https://en.wikipedia.org/wiki/Bloom_filter


15-122 Programming Homework 7 Page 5 of 10

Figure 1: On the left, some strings and their hash values according to the hash_mul31 hash
function.

In the middle, a separate-chaining hash table using this hash function, after the insertion
of the strings "green", "red", and "gray". Next to them is an indication of whether the
Bloom �lter (�rst implementation) returns a true positive (✔), a false positive (!), or a (true)
negative (✘).

On the right, a Bloom �lter (�rst implementation) using this hash function, after the insertion
of the strings "green", "red", and "gray".

2 Basic Implementation

The �rst way we will think about implementing Bloom �lters is by taking a regular separate-
chaining hash table and getting rid of the chains. Instead of the hash table's main array
being a chain*[], we will keep a bool[]. Each index in the Boolean array is false if the
corresponding hash table bucket is empty, and true if the corresponding hash table bucket
is non-empty.

In the example from Figure 1, we would give false positives for "white" and "black",
since those strings collide with strings that are in the set. We would correctly return false
when asked if other strings, like "yellow", were in the set.

Task 2 (6 points) In the �le bloom1.c0, implement Bloom �lters according to the de-
scription above. The type bloom_t should be a struct bloom_filter*:

struct bloom_filter {
int capacity; // capacity < int_max()/4 -- max bool array
bool[] data; // capacity == \length(data)

};

© Carnegie Mellon University 2024



15-122 Programming Homework 7 Page 6 of 10

Note that capacity shall be less than int_max()/4 as C0 won't let you allocate a bool
array that is larger than this.

You must write and correctly use a data structure invariant is_bloom(B). For ease
of debugging, you may also want to write a function print_bloom(B) that visualizes the
internal state of its argument. Calling the constructor bloom_new(m) should create a Bloom
�lter whose array has size m. The Bloom �lter must use the hash function hash_mul31 that
you implemented in lab, and must compute the hash index from the hash value by modding
by the size of the table and then taking the absolute value.

This implementation of the Bloom �lter interface uses much less space than an actual
hash table. An empty basic Bloom �lter with table size m uses one-eighth of the space that
the corresponding empty hash table uses. While a hash table has to allocate more space for
every element, the basic Bloom �lter never allocates any additional space.

3 Better Bloom Filters

In this section, we'll discuss and then implement two improvements to our Bloom �lters.

3.1 Multiple Hash Functions

It's inevitable to have collisions in a hash table; we tolerate these collisions because they
only make the hash table a little bit slower. In Bloom �lters, however, collisions cause us to
get false positives. It's worth going to greater lengths to avoid this.

Increasing m, the size of the table, will help some. However, this strategy only takes us
so far. Another remarkably e�ective strategy is implementing multiple hash functions, and
inserting each item with every available hash functions. This means that more of the hash
table gets �lled up with true values (represented as checkmarks in Figure 2). When we test
whether an element is in the hash table, then we check all of the indices where that element
should hash. If any of them are false, we can conclude that the element was never added
to the hash table.

The mathematics of why this works better than just growing the array will be a topic for
future courses (including Computational Discrete Mathematics, Probability and Computing,
and Algorithms). Looking at Figure 2, we see the result of putting our example strings into
a Bloom �lter. In that �gure, the three hash indices we pick are the last three digits of the
hash_mul31 hash values that we saw in Figure 1. In your implementation, you will want to
use three entirely di�erent hash functions.

While we still have a false positive for the string "black", the Bloom �lter has fewer
false positives than before.

Task 3 (3 points) In the �le bloom2.c0, implement three distinct hash functions, hash1(s),
hash2(s), and hash3(s), which take strings and return integers. These will be the three
hash functions used by your improved Bloom �lter.

You may base your hash functions on any online sources except C0 code you may �nd
on the web. Make sure to cite your sources in comments.

© Carnegie Mellon University 2024



15-122 Programming Homework 7 Page 7 of 10

Figure 2: A Bloom �lter using multiple hash functions.

You may submit your code to the uno�cial autograder (as many times as you want) to
get feedback on how good your hash functions are individually. Note that good individual
performance does not guarantee they will work well together in your improved Bloom �lter.
You also want them to produce hash values that are largely unrelated to each other.

You may also use the collision visualizer you already saw in lab to see how good each
hash function is (again, individually). See the �le README.txt for how to do this.

3.2 Packing Bits

The smallest unit of memory that our computer can e�ciently work with is called a byte.
On most of our modern computers, a value of the bool type takes up 1 byte, a value of the
int type takes up 4 bytes, and an address (the value of a pointer or an array) takes up 8
bytes. That's why we said that an empty Bloom �lter used about one-eighth of the memory
that an empty hash table of the same size used.

Recall that our 32-bit integers are made up of 32 bits, each of which are potentially 1
or 0. A bool[] needs to use m bytes to represent m true or false values. On the other
hand, an int[] A can store 32 true or false values in the 32 bits of A[0], 32 more true
or false values in the 32 bits of A[1], and so on. An integer array that needs to store
m true/false values (bits) needs to only have ⌈m/32⌉ integers, which takes up 4 × ⌈m/32⌉
bytes. This is another 8-fold improvement in our memory usage!

Traditionally, we use 0 to represent false and 1 to represent true in Computer Science.

Task 4 (2 points) In the �le bloom2.c0, implement two functions which facilitate treating
an array of n integers as an array of 32n Boolean values:

© Carnegie Mellon University 2024



15-122 Programming Homework 7 Page 8 of 10

bool get_bit(int[] A, int i)
/*@requires 0 <= i && i/32 < \length(A); @*/ ;

void set_bit(int[] A, int i)
/*@requires 0 <= i && i/32 < \length(A); @*/
/*@ensures get_bit(A, i); @*/ ;

Use the provided �le test-pack.c0 to test these functions. Using get_bit and set_bit
should allow you to treat A like a bool[] that is 32 times longer than \length(A). The
function call get_bit(A,i) should have the same result that the expression A[i] would
have for the bool[]. The function call set_bit(A,i) should have the same result that the
statement A[i] = true; would have for the bool[].

For a freshly-allocated integer array of all zeros, get_bit(A,i) should return false for
any valid i. Subsequent calls to set_bit(A,i) turn single bits of the array to true (or
leave them alone if they are already set).

The exact way that you store 32 true/false values within an integer is up to you, but it
should be similar to the way you stored four 8-bit intensity values in the Pixels assignment.
Your approach should be relatively simple and should be documented with comments.

3.3 Implementation

Task 5 (6 points) In the �le bloom2.c0, implement Bloom �lters incorporating the afore-
mentioned improvements. The type bloom_t should be a struct bloom_filter*:

struct bloom_filter {
int limit; // limit < int_max()/8 -- max int array
int[] data; // limit == \length(data)

};

Note that capacity shall be less than int_max()/8 as C0 won't let you allocate an int
array that is larger than this.

You must write and correctly use a data structure invariant is_bloom(B). For ease
of debugging, you may also want to write a function print_bloom(B) that visualizes the
internal state of its argument. Calling the constructor bloom_new(n) should create a Bloom
�lter whose data �eld is an array of ⌈n/32⌉ integers. This means that the e�ective table size
will always be a multiple of 32. The e�ective table size will be 32×⌈n/32⌉, which is between
0 and 31 (inclusive) bits bigger than the requested table size.

Use the three hash functions you implemented in Section 3.1 as your three hash functions.
The data structure should only need to access and manipulate the data array using the
get_bit and set_bit functions from Section 3.2.

You may submit your code to the uno�cial autograder as many times as you want to see
how your new Bloom �lter implementation compares to your original implementation. This
will give you insight on how your three hash functions perform together.

© Carnegie Mellon University 2024



15-122 Programming Homework 7 Page 9 of 10

4 Using Bloom Filters

Bloom �lters come handy in applications where one needs to check whether a value v is
present in a given set S but this check is expensive. Here's the idea: �rst check v against a
Bloom �lter into which the elements of S have been inserted; if this quick preliminary check
returns false, we know with con�dence that v is not in S; if instead it returns true, we
need to check v against S itself, which is expensive. We called this idea �quick �rst passes�
earlier.

One such application is making sure that a user does not choose a password that is
known to have been compromised. To this end, we will develop a library with the following
interface:

// typedef ______* pwd_t;

pwd_t pwd_new(int capacity, string pwdfile)
/*@requires capacity > 0; @*/
/*@ensures \result != NULL; @*/ ;

bool pwd_thoroughcheck(pwd_t B, string s)
/*@requires B != NULL && string_length(s) > 0; @*/ ;

bool pwd_quickcheck(pwd_t B, string s)
/*@requires B != NULL && string_length(s) > 0; @*/ ;

int pwd_check(pwd_t B, string s)
/*@requires B != NULL && string_length(s) > 0; @*/
/*@ensures 0 <= \result && \result <= 2; @*/ ;

void pwd_stats(pwd_t B)
/*@requires B != NULL; @*/ ;

The function pwd_new populates a new password database (of type pwd_t) with compro-
mised passwords from �le pwdfile. This bad password database consists of a Bloom �lter
of capacity capacity, of the actual set of password in pwdfile, and of some statistic infor-
mation (discussed below). The function pwd_stats prints these statistics.

The function pwd_quickcheck returns whether s might be a compromised password in
B: if it returns false, s is de�nitely not compromised, but if it returns true it may or may
not be compromised. The function pwd_thoroughcheck returns whether s actually is a
compromised password according to B.

The function pwd_check also checks whether s is a compromised password, but it does
so in a smart way (by taking advantage of Bloom �lters). It returns 0 if s is compromised,
1 if it is uncompromised but a thorough check was necessary to establish this, and 2 if it is
uncompromised and a quick check was su�cient to conclude this. This function updates the
statistic information in B. In an actual password setting application, the function pwd_check
would be called each time a user attempts to set a new password: if the password is found to
be compromised, it would be rejected and the user would be prompted to choose a di�erent
password.

© Carnegie Mellon University 2024



15-122 Programming Homework 7 Page 10 of 10

This interface has been partially implemented for you in �le pwd.c0. In it, the concrete
type pwd of bad password databases is de�ned as follows:

struct pwd_header {
bloom_t iffy; // != NULL
string bad; // string_length(bad) > 0;
int checks; // == truepos + trueneg + falsepos
int truepos; // 0 <= truepos <= checks
int trueneg; // 0 <= trueneg <= checks
int falsepos; // 0 <= falsepos <= checks

};
typedef struct pwd_header pwd;

Besides the underlying Bloom �lter (�eld iffy), it records the name (bad) of the compro-
mised password �le, the number of times pwd_check was called (checks) as well as the
number of times a call to pwd_check resulted in a true positive, a true negative and a false
positive (truepos, trueneg and falsepos, respectively).

The functions pwd_thoroughcheck, pwd_stats and the data structure invariant func-
tion is_pwd have been implemented for you in full. The function pwd_new has been partially
implemented.

Task 6 (2 points) Complete the implementation of the function pwd_new and write the
functions pwd_quickcheck and pwd_check. Make sure to update the statistic �elds cor-
rectly in the latter.

You may use the �le pwd-test.c0 to run some tests. The �le data/20-badpwd.txt
contains the 20 most common passwords of 2021 (and yes, "password" is one of them). Feel
free to use other common password �les or to make up your own.

© Carnegie Mellon University 2024


	Bloom Filters
	Testing Bloom Filters
	Using Bloom Filters

	Basic Implementation
	Better Bloom Filters
	Multiple Hash Functions
	Packing Bits
	Implementation

	Using Bloom Filters

