
Lecture 7
Quicksort

15-122: Principles of Imperative Computation (Spring 2024)
Frank Pfenning

In this lecture we consider two related algorithms for sorting that achieve
a much better running time than the selection sort from an earlier lecture:
mergesort and quicksort. We develop quicksort and its invariants in detail.
As usual, contracts and loop invariants will bridge the gap between the
abstract idea of the algorithm and its implementation.

Additional Resources

• Review slides (https://cs.cmu.edu/~15122/handouts/slides/review/07-quicksort.
pdf)

• Code for this lecture (https://cs.cmu.edu/~15122/handouts/code/07-quicksort.
tgz)

We will revisit many of the computational thinking, algorithm, and pro-
gramming concepts from the previous lectures. We highlight the following
important ones:

Computational Thinking: We revisit the divide-and-conquer technique
from the lecture on binary search. We will also see the importance
of randomness for the first time.

Algorithms and Data Structures: We examine mergesort and quicksort,
both of which use divide-and-conquer, but with different overall strate-
gies. Quicksort is in-place as it does not require allocating temporary
memory, but mergesort is not.

Programming: We have occasionally seen recursion in specification func-
tions. In both mergesort and quicksort, it will be a central computa-
tional technique.

Both mergesort and quicksort are examples of divide-and-conquer. We di-
vide a problem into simpler subproblems that can be solved independently
and then combine the solutions. As we have seen for binary search, the
ideal divide step breaks a problem into two of roughly equal size, because it

LECTURE NOTES © Carnegie Mellon University 2024

https://cs.cmu.edu/~15122/handouts/slides/review/07-quicksort.pdf
https://cs.cmu.edu/~15122/handouts/slides/review/07-quicksort.pdf
https://cs.cmu.edu/~15122/handouts/slides/review/07-quicksort.pdf
https://cs.cmu.edu/~15122/handouts/code/07-quicksort.tgz
https://cs.cmu.edu/~15122/handouts/code/07-quicksort.tgz
https://cs.cmu.edu/~15122/handouts/code/07-quicksort.tgz


Lecture 7: Quicksort 2

means we need to divide only logarithmically many times before we have a
basic problem, presumably with an immediate answer. Mergesort achieves
this, quicksort not quite, which presents an interesting trade-off when con-
sidering which algorithm to chose for a particular class of applications.

Recall linear search for an element in an array, which has asymptotic
complexity of O(n). The divide-and-conquer technique of binary search
divides the array in half, determines which half our element would have
to be in, and then proceeds with only that subarray. An interesting twist
here is that we divide, but then we need to conquer only a single new sub-
problem. So if the length of the array is 2k and we divide it by two on each
step, we need at most k iterations. Since there is only a constant number of
operations on each iteration, the overall complexity is O(log n). As a side
remark, if we divided the array into 3 equal sections, the complexity would
remain O(log n) because 3k = (2log2 3)k = 2log2 3×k, so log2 n and log3 n only
differ in a constant factor, namely log2 3.

1 The Quicksort Algorithm

Quicksort uses the technique of divide-and-conquer in a different manner.
We proceed as follows:

1. Pick an arbitrary element of the array (the pivot).

2. Divide the array into two segments, the elements that are smaller than
the pivot and the elements that are greater, with the pivot in between
(the partition phase).

3. Recursively sort the segments to the left and right of the pivot.

In quicksort, dividing the problem into subproblems will be linear time,
but putting the results back together is immediate. This kind of trade-off is
frequent in algorithm design.

Let us analyze the asymptotic complexity of the partitioning phase of
the algorithm. Say we have the array

3, 1, 4, 4, 7, 2, 8

and we pick 3 as our pivot. Then we have to compare each element of this
(unsorted!) array to the pivot to obtain a partition where 2, 1 are to the left
and 4, 7, 8, 4 are to the right of the pivot. We have picked an arbitrary order
for the elements in the array segments: all that matters is that all smaller
ones are to the left of the pivot and all larger ones are to the right.

Since we have to compare each element to the pivot, but otherwise
just collect the elements, it seems that the partition phase of the algorithm



Lecture 7: Quicksort 3

should have complexity O(k), where k is the length of the array segment
we have to partition.

It should be clear that in the ideal (best) case, the pivot element will be
magically the median value among the array values. This just means that
half the values will end up in the left partition and half the values will end
up in the right partition. So we go from the problem of sorting an array of
length n to an array of length n/2. Repeating this process, we obtain the
following picture:

At each level the total work is O(n) operations to perform the partition.
In the best case there will be O(log n) levels, leading us to the O(n log n)
best-case asymptotic complexity.

How many recursive calls do we have in the worst case, and how long
are the array segments? In the worst case, we always pick either the small-
est or largest element in the array so that one side of the partition will be
empty, and the other has all elements except for the pivot itself. In the ex-
ample above, the recursive calls might proceed as follows (where we have
surrounded the unsorted part of the array with brackets):

array pivot
[3, 1, 4, 4, 8, 2, 7] 1
1, [3, 4, 4, 8, 2, 7] 2
1, 2, [3, 4, 4, 8, 7] 3
1, 2, 3, [4, 4, 8, 8] 4
1, 2, 3, 4, [4, 8, 7] 4
1, 2, 3, 4, 4, [8, 7] 7
1, 2, 3, 4, 4, 7, [8]



Lecture 7: Quicksort 4

All other recursive calls are with the empty array segment, since we never
have any unsorted elements less than the pivot. We see that in the worst
case there are n − 1 significant recursive calls for an array of size n. The
k-th recursive call has to sort a subarray of size n − k, which proceeds by
partitioning, requiring O(n− k) comparisons.

This means that, overall, for some constant c we have

c

n−1∑
k=0

k = c
n(n− 1)

2
∈ O(n2)

comparisons. Here we used the fact that O(p(n)) for a polynomial p(n) is
always equal to the O(nk) where k is the leading exponent of the polyno-
mial. This is because the largest exponent of a polynomial will eventually
dominate the function, and big-O notation ignores constant coefficients.

So quicksort has quadratic complexity in the worst case. How can we
mitigate this? If we could always pick the median among the elements in
the subarray we are trying to sort, then half the elements would be less and
half the elements would be greater. So in this case there would be only
log n recursive calls, where at each layer we have to do a total amount of n
comparisons, yielding an asymptotic complexity of O(n log n).

Unfortunately, it is not so easy to compute the median to obtain the
optimal partitioning. It is possible to compute the median of n elements in
O(n) time, but quicksort is rarely if ever implemented this way in practice.
One reason for this is that it turns out that if we pick a random element, the
algorithm will run in O(n log n) time most of the time.

Randomness is very important if we want to claim the algorithm is
likely to run in O(n log n) time. With any fixed-pick strategy, there will
be sample inputs on which the algorithm takes O(n2) steps. For example,
if we always pick the first element, then if we supply an array that is al-
ready sorted, quicksort will take O(n2) steps (and similarly if it is “almost”
sorted with a few exceptions)! If we pick the pivot randomly each time, the
kind of array we get does not matter: the expected running time is always
the same, namely O(n log n). It’s still possible that we could randomly pick
bad pivots, but probabilistically, the chance of this is very, very low. Prov-
ing this, however, is a different matter and beyond the scope of this course.
This is an important example on how to exploit randomness to obtain a re-
liable average case behavior, no matter what the distribution of the input
values.



Lecture 7: Quicksort 5

2 The Quicksort Function

We now turn our attention to developing an imperative implementation of
quicksort, following our high-level description. We implement quicksort
in the function sort as a function that modifies a given array instead of
creating a new one. It therefore returns no value, which is expressed by
writing void in place of the return type.

1 void sort(int[] A, int lo, int hi)
2 //@requires 0 <= lo && lo <= hi && hi <= \length(A);
3 //@ensures is_sorted(A, lo, hi);
4 {
5 ...
6 }

Quicksort solves the same problem as selection sort, so their contract is the
same, but their implementation differs. We sort the segment A[lo..hi) of the
array between lo (inclusively) and hi (exclusively). The precondition in the
@requires annotation verifies that the bounds are meaningful with respect
to A. The post-condition in the @ensures clause guarantees that the given
segment is sorted when the function returns. It does not express that the
output is a permutation of the input, which is required to hold but is not
formally expressed in the contract (see Exercise ??).

The quicksort function represents an example of recursion: a function
(sort) calls itself on a smaller argument. When we analyze such a func-
tion call, it would be a mistake to try to analyze the function that we call
recursively. Instead, we reason about it using contracts.

1. We have to ascertain that the preconditions of the function we are
calling are satisfied.

2. We are allowed to assume that the post-conditions of the function we
are calling are satisfied when it returns.

This applies no matter whether the call is recursive, as it is in this example,
or not.

Reasoning about recursive functions using their contracts is an excel-
lent illustration of computational thinking, separating the what (that is, the
contract) from the how (that is, the definition of the function). To analyze
the recursive call we only care about what the function does.

We also need to analyze the termination behavior of the function, verify-
ing that the recursive calls are on strictly smaller arguments. What smaller
means differs for different functions; here the size of the subrange of the
array is what decreases. The expression hi − lo is divided by two for each



Lecture 7: Quicksort 6

recursive call and is therefore smaller since it is always greater or equal
to 2. If it were less than 2 we would return immediately and not make a
recursive call.

For quicksort, we don’t have to do anything if we have an array seg-
ment with 0 or 1 elements. So we just return if hi − lo ≤ 1.

1 void sort(int[] A, int lo, int hi)
2 //@requires 0 <= lo && lo <= hi && hi <= \length(A);
3 //@ensures is_sorted(A, lo, hi);
4 {
5 if (hi-lo <= 1) return;
6 ...
7 }



Lecture 7: Quicksort 7

Next we have to select a pivot element and call a partition function. We
tell that function the index of the element that we chose as the pivot. For
illustration purposes, we use the middle element as a pivot (to work rea-
sonably well for arrays that are sorted already), but it should really be a
random element. We want partitioning to modify the array A. Still, parti-
tioning needs to return the index mid of the pivot element because we then
have to recursively sort the two subsegments to the left and right of the
index where the pivot is after partitioning. So we declare:

1 int partition(int[] A, int lo, int pi, int hi)
2 //@requires 0 <= lo && lo <= pi;
3 //@requires pi < hi && hi <= \length(A);
4 //@ensures lo <= \result && \result < hi;
5 //@ensures ge_seg(A[\result], A, lo, \result);
6 //@ensures le_seg(A[\result], A, \result+1, hi);
7 ;

Here we use the auxiliary functions ge_seg (for greater or equal than segment)
and le_seg (for less or equal than segment), where

• ge_seg(x, A, lo, mid) if x ≥ y for every y in A[lo..mid).

• le_seg(x, A, mid+1, hi) if x ≤ y for every y in A[mid+1..hi).

Their definitions can be found in file arrayutil.c0.
Some details on this specification: we require pi to be a valid index

in the array range, i.e., lo ≤ pi < hi . In particular, we require lo < hi
because if they were equal, then the segment could be empty and we cannot
possibly pick a pivot element or return its index.

Now we can fill in the remainder of the main sorting function.



Lecture 7: Quicksort 8

1 void sort(int[] A, int lo, int hi)
2 //@requires 0 <= lo && lo <= hi && hi <= \length(A);
3 //@ensures is_sorted(A, lo, hi);
4 {
5 if (hi-lo <= 1) return;
6 int pi = lo + (hi-lo)/2; /* should be random */
7

8 int mid = partition(A, lo, pi, hi);
9 sort(A, lo, mid);

10 sort(A, mid+1, hi);
11 return;
12 }

It is a simple but instructive exercise to reason about this program, using
only the contract for partition together with the pre- and post-conditions
for sort (see Exercise ??).

To show that the sort function terminates, we have to show the array
segment becomes strictly smaller in each recursive call. First, mid − lo <
hi − lo since mid < hi by the post-condition for partition. Second, hi −
(mid + 1) < hi − lo because lo < mid + 1, also by the post-condition for
partition.

3 Partitioning

The trickiest aspect of quicksort is the partitioning step. A first idea is to
pick the pivot and copy all the other elements of the input array at either
side of a temporary array — elements smaller than the pivot towards the
left and elements greater than or equal to the pivot towards the right. By the
time we are done, one position of the temporary array will be still be open,
and that’s where we put the pivot. As a final step, we copy the contents of
temporary array back into the input array.

This approach requires allocating a new array. Selection sort, by con-
trast, sorted its input array without the need of allocating a new array. An
algorithm that at most allocates constant space is called in-place. Selection
sort was in-place because it didn’t allocate any temporary space. With the
above idea for partition, quicksort would not be in-place because each call
to partition allocates a new array of the same length of its input.

But with some cleverness, we can write an in-place partition algorithm!
A partition algorithm that doesn’t allocate new memory. Let’s consider the
situation when partition is called:



Lecture 7: Quicksort 9

Perhaps the first thing we notice is that we do not know where the pivot
will end up in the partitioned array! That’s because we don’t know how
many elements in the segment are smaller and how many are larger than
the pivot. In particular, the return value of partition could be different than
the pivot index that we pass in, even if the value that used to be at the
pivot index in the array before calling partition will be at the returned in-
dex when partition is done.1 One idea is to make a pass over the segment
and count the number of smaller elements, move the pivot into its place,
and then scan the remaining elements and put them into their place. For-
tunately, this extra pass is not necessary. We start by moving the pivot
element out of the way, by swapping it with the leftmost element in the
array segment.

Now the idea is to gradually work towards the middle, accumulating ele-
ments less than the pivot on the left and elements greater than the pivot on
the right end of the segment (excluding the pivot itself). For this purpose
we introduce two indices, left and right . We start them out as lo + 1 (to
avoid the stashed-away pivot) and hi .

1To see why, imagine there are several elements equal to the pivot value.



Lecture 7: Quicksort 10

Since 14 < pivot , we can advance the left index: this element is in the
proper place.

At this point, 25 > pivot , it needs to go on the right side of the array. If we
put it on the extreme right end of the array, we can then say that it is in its
proper place. We swap it into A[right − 1 ] and decrement the right index.

In the next two steps, we proceed by making swaps. First, we decide that
the 21 that is currently at left can be properly placed to the left of the 25, so
we swap it with the element to the left of 25. Then, we have 89 at A[left ],
and so we can decide this is well-placed to the left of that 21.



Lecture 7: Quicksort 11

Let’s take one more step: 2 < pivot , so we again just decide that the 2 is fine
where it is and increment left .

At this point we pause to read off the general invariants which will
allow us to synthesize the program. We see:

(1) pivot ≥ A[lo + 1 ..left)

(2) pivot ≤ A[right ..hi)

(3) A[lo] = pivot

We may not be completely sure about the termination condition, but we
can play the algorithm through to its end and observe:



Lecture 7: Quicksort 12

Where do left and right need to be, according to our invariants? By invari-
ant (1), all elements up to but excluding left must be less than or equal to
pivot . To guarantee we are finished, therefore, the left index must address
the element 78 at lo + 4. Similarly, invariant (2) states that the pivot must
be less than or equal to all elements starting from right up to but excluding
hi . Therefore, right must also address the element 78 at lo + 4.

This means after the last iteration, just before we exit the loop, we have
left = right , and throughout:

(4) lo + 1 ≤ left ≤ right ≤ hi

Now comes the last step: since left = right , pivot ≥ A[left − 1] and we can
swap the pivot at lo with the element at left−1 to complete the partition op-
eration. We can also see the left − 1 should be returned as the new position
of the pivot element.

4 Implementing Partitioning

Now that we understand the algorithm and its correctness proof, it remains
to turn these insights into code. We start by swapping the pivot element to
the beginning of the segment.

1 int partition(int[] A, int lo, int pi, int hi)
2 //@requires 0 <= lo && lo <= pi && pi < hi && hi <= \length(A);



Lecture 7: Quicksort 13

3 //@ensures lo <= \result && \result < hi;
4 //@ensures ge_seg(A[\result], A, lo, \result);
5 //@ensures le_seg(A[\result], A, \result+1, hi);
6 {
7 // Hold the pivot element off to the left at "lo"
8 int pivot = A[pi];
9 swap(A, lo, pi);

10 ...
11 }



Lecture 7: Quicksort 14

At this point we initialize left and right to lo + 1 and hi , respectively. We
have to make sure that the invariants are satisfied when we enter the loop
for the first time, so let’s write these.

12 int left = lo+1;
13 int right = hi;
14

15 while (left < right)
16 //@loop_invariant lo+1 <= left && left <= right && right <= hi;
17 //@loop_invariant ge_seg(pivot, A, lo+1, left); // Not lo!
18 //@loop_invariant le_seg(pivot, A, right, hi);
19 {
20 ...
21 }

The crucial observation here is that lo < hi by the precondition of the func-
tion. Therefore left ≤ hi = right when we first enter the loop. The segments
A[lo + 1 ..left) and A[right ..hi) will both be empty, initially.



Lecture 7: Quicksort 15

The code in the body of the loop just compares the element at index left
with the pivot and either increments left , or swaps the element to A[right ].

15 while (left < right)
16 //@loop_invariant lo+1 <= left && left <= right && right <= hi;
17 //@loop_invariant ge_seg(pivot, A, lo+1, left); // Not lo!
18 //@loop_invariant le_seg(pivot, A, right, hi);
19 {
20 if (A[left] <= pivot) {
21 left++;
22 } else {
23 //@assert A[left] > pivot;
24 swap(A, left, right-1);
25 right--;
26 }
27 }

Now we just note the observations about the final loop state with an asser-
tion, swap the pivot into place, and return the index left − 1. The complete
function is on the next page, for reference.



Lecture 7: Quicksort 16

1 int partition(int[] A, int lo, int pi, int hi)
2 //@requires 0 <= lo && lo <= pi;
3 //@requires pi < hi && hi <= \length(A);
4 //@ensures lo <= \result && \result < hi;
5 //@ensures ge_seg(A[\result], A, lo, \result);
6 //@ensures le_seg(A[\result], A, \result, hi);
7 {
8 // Hold the pivot element off to the left at "lo"
9 int pivot = A[pi];

10 swap(A, lo, pi);
11

12 int left = lo+1;
13 int right = hi;
14

15 while (left < right)
16 //@loop_invariant lo+1 <= left && left <= right && right <= hi;
17 //@loop_invariant ge_seg(pivot, A, lo+1, left); // Not lo!
18 //@loop_invariant le_seg(pivot, A, right, hi);
19 {
20 if (A[left] <= pivot) {
21 left++;
22 } else {
23 //@assert A[left] > pivot;
24 swap(A, left, right-1);
25 right--;
26 }
27 }
28 //@assert left == right;
29

30 swap(A, lo, left-1);
31 return left-1;
32 }

5 Stability

Outside of introductory programming courses, much of the time, we don’t
sort arrays of integers but arrays of records, where the data we are trying to
sort (like a lecture number) is associated with another piece of information
(like a username). This is also what happens when we tell a spreadsheet to
sort by a particular column: if we take the quicksort algorithm and try to
sort the following array by lecture number, we’ll get this result:



Lecture 7: Quicksort 17

The resulting array is sorted by lecture number, but whereas lovelace ap-
peared after church in the unsorted array, they appear in the other order in
the sorted array. To put it another way, the first array is sorted by student
IDs, we might expect the Andrew IDs within Lecture 1 and Lecture 2 to be
sorted, but that’s not the case.

If a sort fulfills this expectation — if the relative order in which distinct
elements that the sort sees as equivalent, like (2,church) and (2,lovelace),
is preserved by sorting — then the sort is said to be a stable sort.

Selection sort is in-place, slow, and not stable. Quicksort is in-place, hope-
fully fast (with lucky or random pivot selection), but not stable. We’ll close
out our discussion of sorting with the presentation of a sort that’s stable,
fast, but not in-place.

6 Mergesort

Let’s think more generally about how to apply the divide-and-conquer
technique to sorting. How do we divide? In quicksort, the partition func-
tion is what divides the problem into two sub-problems, and it’s the first
thing we do. A characteristic of mergesort is that the divide phase of divide-
and-conquer is immediate: we only need to calculate the midpoint. On the
other hand, it is (relatively) complicated and expensive (linear in time and
temporary space) to combine the results of solving the two independent
subproblems with the merging operation.

The simple idea is just to divide a given array in half, sort each half
independently. Then we are left with an array where the left half is sorted



Lecture 7: Quicksort 18

and the right half is sorted. We then need to merge the two halves into
a single sorted array. We actually don’t really “split” the array into two
separate arrays, but we always sort array segments A[lo..hi). We stop when
the array segment is of length 0 or 1, because then it must be sorted.

A straightforward implementation of this idea would be as follows:

1 void sort (int[] A, int lo, int hi)
2 //@requires 0 <= lo && lo <= hi && hi <= \length(A);
3 //@ensures is_sorted(A, lo, hi);
4 {
5 if (hi-lo <= 1) return;
6 int mid = lo + (hi-lo)/2;
7

8 sort(A, lo, mid); //@assert is_sorted(A, lo, mid);
9 sort(A, mid, hi); //@assert is_sorted(A, mid, hi);

10 merge(A, lo, mid, hi);
11 return;
12 }

We would still have to write merge, of course, but compare this to the quick-
sort implementation. They are very similar, but instead of a partition
followed by two recursive calls, we have two recursive calls followed by a
merge. We use the specification function is_sorted from the last lecture
that takes an array segment, defined by its lower and upper bounds.

The simple and efficient way to merge two sorted array segments (so
that the result is again sorted) is to create a temporary array, scan each of
the segments from left to right, copying the smaller of the two into the
temporary array. This is a linear time (O(n)) operation, but it also requires
a linear amount of temporary space. Because of this mergesort is not in-
place. The merge operation can be seen in the file sortlib.c0 included as
a part of this lecture’s code directory.

Let’s consider the asymptotic complexity of mergesort, assuming that
the merging operation is O(n).



Lecture 7: Quicksort 19

We see that the asymptotic running time will be O(n log n), because there
are O(log n) levels, and on each level we have to perform O(n) operations
to merge. The midpoint calculation is deterministic, so this is a worst-case
bound.



Lecture 7: Quicksort 20

7 Exercises

Exercise 1. [sample solution on page ??
] In this exercise we explore strengthening the contracts on sorting functions that
modify their input array.

1. Write a function is_permutation which checks that one segment of an
array is a permutation of another.

2. Extend the specifications of sorting and partitioning to include the permu-
tation property.

3. Discuss any specific difficulties or problems that arise. Assess the outcome.

Exercise 2 (sample solution on page ??). Prove that the precondition for quick-
sort’s sort together with the contract for partition implies the post-condition.
During this reasoning you may also assume that the contract holds for recursive
calls.

Exercise 3 (sample solution on page ??). Our implementation of partitioning
did not pick a random pivot, but took the middle element. Construct an array with
seven elements on which our algorithm will exhibit its worst-case behavior, that is,
on each step, one of the partitions is empty.

Exercise 4 (sample solution on page ??). An alternative way of implementing
the partition function is to use extra memory for temporary storage. Recall the
prototype of partition:

int partition(int[] A, int lo, int hi)
//@requires 0 <= lo && lo < hi && hi <= \length(A);
//@ensures lo <= \result && \result < hi;
//@ensures ge_seg(A[\result], A, lo, \result);
//@ensures le_seg(A[\result], A, \result+1, hi);

Exercise 5 (sample solution on page ??). Give an example array that shows that
selection sort is not stable. A good way to do so is to trace the execution through
the iterations of the loop.

Exercise 6 (sample solution on page ??). You are given two implementations of
quicksort (#1 and #2). They are identical except that one of them always uses the
first element of the array segment it is sorted as the pivot, while the other picks a
random element of the array segment as the pivot each time. You don’t know which
implementation is which.



Lecture 7: Quicksort 21

Based on your knowledge of quicksort, you ask for the timing of both imple-
mentations on some sorted and some random arrays. These timings are reported to
you in the following two tables:

Num. elements #1 runtime (sec) #2 runtime (sec)

212 0.09 0.08

214 0.41 0.43

216 1.91 1.95

218 8.75 9.11

220 37.55 38.20

and
Num. elements #1 runtime (sec) #2 runtime (sec)

212 0.08 0.42

214 0.35 3.32

216 1.73 27.48

218 7.39 214.39

220 33.36 1726.54

Which implementation picks the first element of the array segment as the pivot?
#1 or #2? Why?

Which set of measurements is for the random array experiment? Why?



Lecture 7: Quicksort 22

Sample Solutions

Solution of exercise ??
The simplest way to check that two array segments are a permutation of

one another is to sort both and check that the sorted segments are the same.
Doing this directly is unsatisfactory however: sorting the segments would
modify them, but we don’t want specification functions to modify their
input. A way out of this difficulty is to make copies of the array segments,
sort these copies and check that the sorted copies are the same. To achieve
these goal, we need a few helper functions:

• a function seg_copy that copies an array segment into a new array,

• a sorting function — we will use selection sort which we renamed
selsort, and

• a function array_equal which checks that two arrays of the same
length have the same element in each position

Here is the code for seg_copy and array_equal (we saw variants of these
functions in past lecture exercises).



Lecture 7: Quicksort 23

int[] seg_copy(int[] A, int lo, int hi)
//@requires 0 <= lo && lo <= hi && hi <= \length (A);
{
int n = hi - lo;
int[] C = alloc_array(int, n);

for (int i = 0; i < n; i++)
//@loop_invariant 0 <= i && i <= n;
//@loop_invariant lo <= i+lo && i+lo <= hi;
{
C[i] = A[lo+i];

}
return C;

}

bool array_equal(int[] A, int[] B, int n)
//@requires 0 <= n && n <= \length(A) && n <= \length(B);
{
for (int i = 0; i < n; i++)
//@loop_invariant 0 <= i && i <= n;
{
if (A[i] != B[i])
return false;

}
return true;

}
Then, the code for is_permutation is a direct transcription of the ap-

proach outlined earlier:



Lecture 7: Quicksort 24

bool is_permutation(int[] A, int lo1, int hi1, int[] B, int lo2, int hi2)
//@requires 0 <= lo1 && lo1 <= hi1 && hi1 <= \length (A);
//@requires 0 <= lo2 && lo2 <= hi2 && hi2 <= \length (B);
{
if (hi1 - lo1 != hi2 - lo2) // different lengths
return false;

int[] A_copy = seg_copy(A, lo1, hi1);
int[] B_copy = seg_copy(B, lo2, hi2);

int n = hi1 - lo1;
//@assert n == hi2 - lo2;

selsort(A_copy, 0, n);
selsort(B_copy, 0, n);
return array_equal(A_copy, B_copy, n);

}

Next, we want to use to check that sort computes a sorted array that
is a permutation of the array it was given in input (as opposed to, say, an
array all of whose elements are 0 — which is sorted but unrelated to the
input array). Since sort updates the input array, we first need to make
a copy. Then, just before returning, we check that the sorted array is a
permutation of this (copy of the) input array. This is a small hurdle that we
overcome using the helper function seg_copy once more.

Carrying out the permutation check within an //@assert won’t work
however. This is due to a requirement of contracts called purity. A function
is pure if it does not allocate or modify allocated memory. It is important
that contracts be pure otherwise executing a program with and without the
-d flag may produce different output. The function is_permutation is not
pure because it extends the allocated memory with two new arrays (via
seg_copy).

So, we cannot call is_permutation within a contract. Second best is
to call it using an assert. Therefore, we can check that the sorted array
produced by sort is a permutation of the array passed to it as input by
bracketing the body of quicksort between the following two lines:

int[] C = seg_copy(A, lo, hi);

and

assert(is_permutation(A, lo, hi, C, 0, hi-lo));

We update the code of partition similarly.
Summarizing the difficulties we encountered:



Lecture 7: Quicksort 25

• We need to make a copy of the two array segments prior to sorting
them to check they are a permutation of each other.

• The sorting function we want to instrument, here quicksort, needs
to make a copy of its input array to check that the sorted array is a
permutation of the input array.

• Because this approach to checking permutation creates temporary ar-
rays in allocated memory, it is not pure. Therefore, we cannot use it
inside an //@assert (or any other contract), but must instead call it
from an assert (which is not a contract).

The fact that is_permutation is not pure means that it cannot be used
in contracts. Therefore it will always be executed when running a program.
Can we write a pure version of is_permutation? This is possible, and a
bonus challenge for this exercise.

Solution of exercise ?? Here’s the prototype of partition and the code of
sort for reference:

1 int partition(int[] A, int lo, int hi)
2 /*@requires 0 <= lo && lo < hi && hi <= \length(A); @*/
3 /*@ensures lo <= \result && \result < hi; @*/
4 /*@ensures ge_seg(A[\result], A, lo, \result); @*/
5 /*@ensures le_seg(A[\result], A, \result+1, hi); @*/ ;
6

7 void sort(int[] A, int lo, int hi)
8 //@requires 0 <= lo && lo <= hi && hi <= \length(A);
9 //@ensures is_sorted(A, lo, hi);

10 {
11 if (hi - lo <= 1)
12 return;
13

14 int p = partition(A, lo, hi);
15 sort(A, lo, p);
16 sort(A, p+1, hi);
17 }

The function sort has two return statements, so we must prove that the
postcondition holds in both situations.

Case 1: sort returns on line ??

a. 0 <= lo && lo <= hi && hi <= \length(A) by line ??
b. hi - lo <= 1 by line ??



Lecture 7: Quicksort 26

c. is_sorted(A, lo, hi) by (a) and (b) since A[lo,hi) has
at most one element

Case 2: sort returns on line ??

In this case, there are multiple recursive calls to sort. We will assume
that the postcondition of sort is true for these recursive calls (the easy
check that their preconditions are met is omitted) and show that the
postcondition of sort must also be true on line ??.

a. A[lo, p) <= A[p] by lines ?? and ??
b. A[p] <= A[p+1, hi) by lines ?? and ??
c. is_sorted(A, lo, p) by line ?? and A
d. is_sorted(A, p+1, hi) by line ?? and B
e. is_sorted(A, lo, hi) by math on (a), (b), (c) and (d)

Solution of exercise ?? Consider the 7-element array [1, 3, 5, 7, 6, 4, 2].
Our implementation would do the following, where each step corresponds
to one call to partition:

1. Pick 7 as the pivot, leaving the arrays [1, 3, 5, 6, 4, 2] and []
to be sorted.

2. Pick 6 as the pivot, leaving the arrays [1, 3, 5, 4, 2] and [] to be
sorted.

3. Pick 5 as the pivot, leaving the arrays [1, 3, 4, 2] and [] to be
sorted.

4. Pick 4 as the pivot, leaving the arrays [1, 3, 2] and [] to be sorted.

5. Pick 3 as the pivot, leaving the arrays [1, 2] and [] to be sorted.

6. Pick 2 as the pivot, leaving the arrays [1] and [] to be sorted.

Solution of exercise ?? This version of partition starts just in the code
seen in this chapter, but picking a pivot index pi (set arbitrarily to the mid-
point of the segment) and, for convenience, swapping its value (the pivot
itself) with the leftmost element of the array. Then it diverges.

We create a temporary array TMP of length hi-lo (just enough to hold
all the elements in A[lo,hi)) and initialize two indices, left and right,
to 0 and hi-lo, respectively. We copy the elements of A[lo,hi) that are
smaller than or equal to the pivot to the left, and the elements that are larger



Lecture 7: Quicksort 27

than the pivot to the right. At each step, TMP[left,right) is the portion
of the temporary array we have not filled yet. Once we have processed
in this way all the elements of A[lo,hi) (except the pivot at A[lo]), the
temporary array will have exactly one position unfilled, which were we
copy the pivot. At this point, all were are left to do is to copy the contents
of TMP back into A[lo,hi). The resulting code is as follows:



Lecture 7: Quicksort 28

1 int partition(int[] A, int lo, int hi)
2 //@requires 0 <= lo && lo < hi && hi <= \length(A);
3 //@ensures lo <= \result && \result < hi;
4 //@ensures ge_seg(A[\result], A, lo, \result);
5 //@ensures le_seg(A[\result], A, \result+1, hi);
6 {
7 int pi = lo + (hi - lo)/2; // pivot index
8 swap(A, lo, pi); // move pivot to index 0
9 int pivot = A[lo]; // pivot

10

11 int[] TMP = alloc_array(int, hi-lo);
12 int left = 0;
13 int right = hi-lo;
14

15 for (int i = lo+1; i < hi; i++)
16 //@loop_invariant lo <= i && i <= hi;
17 //@loop_invariant left + (hi - lo - right) == i - (lo+1);
18 //@loop_invariant ge_seg(pivot, TMP, 0, left);
19 //@loop_invariant lt_seg(pivot, TMP, right, hi-lo);
20 {
21 if (A[i] <= pivot) {
22 TMP[left] = A[i];
23 left++;
24 }
25 else {
26 right--;
27 TMP[right] = A[i];
28 }
29 }
30 //@assert left == right - 1;
31 TMP[left] = pivot;
32 //@assert ge_seg(TMP[left], TMP, 0, left);
33 //@assert lt_seg(TMP[left], TMP, right, hi-lo);
34

35 for (int i = 0; i < hi-lo; i++)
36 //@loop_invariant 0 <= i && i <= hi - lo;
37 //@loop_invariant eq_segs(TMP, 0, i, A, lo, lo+i);
38 {
39 A[lo+i] = TMP[i];
40 }
41

42 return lo+left; // pivot position in A
43 }



Lecture 7: Quicksort 29

This function relies on many array indices. The loop invariants pin-
point how these indices are related and what is in the array segments they
delimit. The assertions describes this relation at the end of the first loop as
well as consequences on the array segments.

In the loop invariants of the second loop , we use the specification func-
tion eq_segs(A, loA, hiA, B, loB, hiB) to check that two array seg-
ments of the same length are equal position by position. If you haven’t
done so in an earlier exercise, you may want to write it for yourself.

Solution of exercise ?? Recall the code for selection sort:

void selsort(int[] A, int lo, int hi)
//@requires 0 <= lo && lo <= hi && hi <= \length(A);
//@ensures is_sorted(A, lo, hi);
{
for (int i = lo; i < hi; i++)
//@loop_invariant lo <= i && i <= hi;
//@loop_invariant is_sorted(A, lo, i);
//@loop_invariant le_segs(A, lo, i, A, i, hi);
{
int m = find_min(A, i, hi);
swap(A, i, m);

}
}

Consider the integer array A = [2a, 2b, 1] which contains two occur-
rences of 2, which we distinguish using the subscripts a and b. Let’s call
selsort(A,3) and observe what happens at each iteration.

Iteration 1 (i == 0):
m == 2, so that A[m] = 1.
After the swap, the array A is [1, 2b, 2a]

Iteration 2 (i == 1):
m == 1, so that A[m] = 2b
After the swap, the array A is [1, 2b, 2a]

Iteration 3 (i == 2):
m == 2, so that A[m] = 2a
After the swap, the array A is [1, 2b, 2a]

Note that the two occurrences of 2 appear in opposite order compared to
the original array A.

Solution of exercise ?? We know that the average time complexity of quick-
sort is O(n log n) on an n-element array, which is what we can expect when



Lecture 7: Quicksort 30

called on an array filled with randomly chosen values. The worst-time
complexity is instead O(n2), which we get for example when systemati-
cally choosing the first element of the array segment as the pivot and calling
quicksort on an array that is already sorted.

Observe that in each of these tables, the size of the input grows 4-fold at
each step, from size n to size 4n say. For each of these complexity bounds,
assume that the time measurement when the input has size n has value k.
Let’s see what we should expect in each case when the input has size 4n:

O(n2): Based on the definition of big-O, we know that k = cn2 for some
constant c — for an input of size n. The expected timing for an input
of size 4n is c(4n)2 = 16cn2 = 16k. Therefore, for an algorithm whose
running time is in O(n2), we expect the measurement to be 16 times
larger going from one row of the tables to the next.

O(n log n): In this case, we have that k = cn log n for some c. Thus, the
expected timing for an input of size 4n is c(4n) log(4n) = 4cn log n +
4cn log 2 ≤ 8cn log n = 8k. Therefore, for an algorithm whose running
time is in O(n log n), we expect the measurement to between 4 and 8
times larger going from one row of the table to the next.

Let’s see if the measurement tables support these expectations.

• The measurements in each row of the first table are very similar, which
suggests that implementations #1 and #2 have the same effective com-
plexity in this scenario. This can only be the case if the input arrays
contain randomly arranged elements — if the elements were sorted,
implementations #1 and #2 would take very different times.

Looking at how the measurements change relative to the size of the
input, we notice that in each column the timings grow by a factor of
about 4 going from one row to the next. This is fully in line with our
expectations for an O(n log n) complexity.

• The situation is very different in the second table, which necessarily
must report on the timing of sorted arrays. Notice that the values in
the left column (for implementation #1) are very similar to what we
saw in the first table. This indicates that sorting the input array does
not influence the timing of implementation #1. Thus, implementation
#1 must be the one that chooses the pivot at random at each call to
partition, yielding an O(n log n) complexity also in the sorted case.

To confirm this, let’s look at the second column, for implementation
#2. The numbers are quite different there! Going from one row to
the next, the measurements grow consistently by a factor of about 8



Lecture 7: Quicksort 31

(not quite 16, but significantly more than in the left column or in the
first table). This suggests a very different asymptotic behavior which,
given our choices we conclude must correspond to O(n2). Implemen-
tation #2 picks the first element of the array as the pivot.

It may be surprising that the measurements in the right column of
the second table grow by a factor of about 8 for an O(n2) complexity.
We expected a factor of 16. Recall that big-O notation only highlights
the largest contributors to the cost. In particular, lower terms get ab-
stracted away. This may explain this discrepancy.

Summarizing, implementation #1 picked the pivot at random while im-
plementation #2 always used the first element in the array segment. The
first experiment involved arrays whose elements were randomly ordered,
while the second experiment used ordered arrays.


