
Lecture 2
Ints

15-122: Principles of Imperative Computation (Spring 2024)
Frank Pfenning

Two fundamental types in almost any programming language are booleans
and integers. Booleans are comparatively straightforward: they have two
possible values (true and false) and conditionals to test boolean values.
We will return to their properties in a later lecture.

Integers . . . ,−2,−1, 0, 1, 2, . . . are considerably more complex, because
there are infinitely many of them. Because memory is finite, only a finite
subrange of them can be represented in computers. In this lecture we dis-
cuss how integers are represented, how we can deal with the limited range
in the representation, and how various operations are defined on these rep-
resentations.

Additional Resources

• Review slides (https://cs.cmu.edu/~15122/handouts/slides/review/02-ints.
pdf)

• OLI modules (https://cs.cmu.edu/~15122/handouts/oli/oli-02.shtml)

• Code for this lecture (https://cs.cmu.edu/~15122/handouts/code/02-ints.
tgz)

In terms of our learning goals, this lecture addresses:

Computational Thinking: Working with and around resource limitations.

Algorithms and Data Structures: Employing integer algorithms (binary ad-
dition)

Programming: Identifying, describing, and effectively using integers as
signed modular arithmetic and as fixed-length bit vectors in C0.

1 Binary Representation of Natural Numbers

For the moment, we only consider the natural numbers 0, 1, 2, . . . and we
do not yet consider the problems of limited range. Number notations have

LECTURE NOTES © Carnegie Mellon University 2024

https://cs.cmu.edu/~15122/handouts/slides/review/02-ints.pdf
https://cs.cmu.edu/~15122/handouts/slides/review/02-ints.pdf
https://cs.cmu.edu/~15122/handouts/slides/review/02-ints.pdf
https://cs.cmu.edu/~15122/handouts/oli/oli-02.shtml
https://cs.cmu.edu/~15122/handouts/oli/oli-02.shtml
https://cs.cmu.edu/~15122/handouts/code/02-ints.tgz
https://cs.cmu.edu/~15122/handouts/code/02-ints.tgz
https://cs.cmu.edu/~15122/handouts/code/02-ints.tgz

Lecture 2: Ints 2

a base b. To write down numbers in base b we need b distinct digits. Each
digit is multiplied by an increasing power of b, starting with b0 at the right
end. For example, in base 10 we have the ten digits 0–9 and the string 9380
represents the number 9∗103+3∗102+8∗101+0∗100. We call numbers in
base 10 decimal numbers. Unless it is clear from context that we are talking
about a certain base, we use a subscript[b] to indicate a number in base b.

In computer systems, two bases are of particular importance. Binary
numbers use base 2, with digits 0 and 1, and hexadecimal numbers (explained
more below) use base 16, with digits 0–9 and A–F . Binary numbers are
so important because the basic digits, 0 and 1, can be modeled inside the
computer by two different voltages, usually “off” for 0 and “on” for 1. To
find the number represented by a sequence of binary digits we multiply
each digit by the appropriate power of 2 and add up the results. In general,
the value of an n-bit sequence

bn−1 . . . b1b0 [2] = bn−12
n−1 + · · ·+ b12

1 + b02
0 =

n−1∑
i=0

bi2
i

For example, 10011[2] represents 1 ∗ 24 + 0 ∗ 23 + 0 ∗ 22 + 1 ∗ 21 + 1 ∗ 20 =
16 + 2 + 1 = 19.

We can also calculate the value of a binary number in a nested way,
exploiting Horner’s rule for evaluating polynomials.

10011[2] = (((1 ∗ 2 + 0) ∗ 2 + 0) ∗ 2 + 1) ∗ 2 + 1 = 19

In general, if we have an n-bit number with bits bn−1 . . . b0, we can calculate

(· · · ((bn−1 ∗ 2 + bn−2) ∗ 2 + bn−3) ∗ 2 + · · ·+ b1) ∗ 2 + b0

Example 1. For example, taking the binary number 10010110[2] write the digits
from most significant to least significant, calculating the cumulative value from
left to right by writing it top to bottom.

1 = 1 leftmost bit
1 ∗ 2 + 0 = 2
2 ∗ 2 + 0 = 4
4 ∗ 2 + 1 = 9
9 ∗ 2 + 0 = 18

18 ∗ 2 + 1 = 37
37 ∗ 2 + 1 = 75
75 ∗ 2 + 0 = 150 rightmost bit

x
Reversing this process allows us to convert a number into binary form. Here we

start with the number and successively divide by two, calculating the remainder.
At the end, the least significant bit is at the top.

Lecture 2: Ints 3

For example, converting 198 to binary form would proceed as follows:

198 = 99 ∗ 2 + 0 rightmost bit
99 = 49 ∗ 2 + 1
49 = 24 ∗ 2 + 1
24 = 12 ∗ 2 + 0
12 = 6 ∗ 2 + 0
6 = 3 ∗ 2 + 0
3 = 1 ∗ 2 + 1
1 = 0 ∗ 2 + 1 leftmost bit

y
We read off the answer, from bottom to top, arriving at 11000110[2].

2 Modular Arithmetic

Within a computer, there is a natural size of words that can be processed
by single instructions. In early computers, the word size was typically 8
bits; now it is 32 or 64. In programming languages that are relatively close
to machine instructions like C or C0, this means that the native type int of
integers is limited to the size of machine words. In C0, we decided that the
values of type int occupy 32 bits.

This makes it very easy to deal with for small numbers, because the
more significant digits can simply be 0. According to the formula that
yields their number value, these bits do not contribute to the overall value.
But we have to decide how to deal with large numbers, when operations
such as addition or multiplication would yield numbers that are too big to
fit into a fixed number of bits. One possibility would be to raise overflow
exceptions. This is somewhat expensive (since the overflow condition must
be explicitly detected), and has other negative consequences. For example,
(n+n)−n is no longer equal to n+(n−n) because the former can overflow
while the latter always yields n and does not overflow. Another possibility
is to carry out arithmetic operations modulo the number of representable
integers, which would be 232 in the case of C0. We say that the machine
implements modular arithmetic.

In higher-level languages, one would be more inclined to think of the
type of int to be inhabited by integers of essentially unbounded size. This
means that a value of this type would consist of a whole vector of machine
words whose size may vary as computation proceeds. Basic operations
such as addition no longer map directly onto machine instruction, but are
implemented by small programs. Whether this overhead is acceptable de-
pends on the application.

Lecture 2: Ints 4

Returning to modular arithmetic, the idea is that any operation is car-
ried out modulo 2p for size p. Even when the modulus is not a power of
two, many of the usual laws of arithmetic continue to hold, which makes it
possible to write programs confidently without having to worry, for exam-
ple, about whether to write x+(y+z) or (x+y)+z. We have the following
properties of the abstract algebraic class of rings which are shared between
ordinary integers and integers modulo a fixed number n.

Commutativity of addition x+ y ≡mod n y + x
Associativity of addition (x+ y) + z ≡mod n x+ (y + z)
Additive unit x+ 0 ≡mod n x

Additive inverse x+ (−x) ≡mod n 0
Cancellation −(−x) ≡mod n x

Commutativity of multiplication x ∗ y ≡mod n y ∗ x
Associativity of multiplication (x ∗ y) ∗ z ≡mod n x ∗ (y ∗ z)
Multiplicative unit x ∗ 1 ≡mod n x

Distributivity x ∗ (y + z) ≡mod n x ∗ y + x ∗ z
Annihilation x ∗ 0 ≡mod n 0

Some of these laws, such as associativity and distributivity, do not hold
for so-called floating point numbers that approximate real numbers. This
significantly complicates the task of reasoning about programs with float-
ing point numbers which we have therefore omitted from C0.

3 An Algorithm for Binary Addition

In the examples below, we use arithmetic modulo 24, with 4-bit numbers.
Addition proceeds from right to left, adding binary digits modulo 2, and
using a carry if the result is 2 or greater. For example,

1 0 1 1 = 11
+ 1 01 01 1 = 9

(1) 0 1 0 0 = 20 ≡mod 16 4

where we used a subscript to indicate a carry from the right. The final carry,
shown in parentheses, is ignored, yielding the answer of 4 which is correct
modulo 16.

This grade-school algorithm is quite easy to implement in software, but
it is not suitable for a hardware implementation because it is too sequential.
On 32 bit numbers the algorithm would go through 32 stages, for an oper-
ation which, ideally, we should be able to perform in one machine cycle.
Modern hardware accomplishes this by using an algorithm where more of
the work can be done in parallel.

Lecture 2: Ints 5

4 Two’s Complement Representation

So far, we have concentrated on the representation of natural numbers
0, 1, 2, In practice, of course, we would like to program with negative
numbers. How do we define negative numbers? We define negative num-
bers as additive inverses: −x is the number y such that x+y = 0. A crucial ob-
servation is that in modular arithmetic, additive inverses already exist! For
example, −1 ≡mod 16 15 because −1 + 16 = 15. And 1 + 15 = 16 ≡mod 16 0,
so, indeed, 15 is the additive inverse of 1 modulo 16.

Example 2. Similarly, −2 ≡mod 16 14, −3 ≡mod 16 13, etc. Writing out the
equivalence classes of numbers modulo 16 together with their binary representa-
tion, we have

. . . −16 0 16 . . . 0000

. . . −15 1 17 . . . 0001

. . . −14 2 18 . . . 0010

. . . −13 3 19 . . . 0011

. . . −12 4 20 . . . 0100

. . . −11 5 21 . . . 0101

. . . −10 6 22 . . . 0110

. . . −9 7 23 . . . 0111

. . . −8 8 24 . . . 1000

. . . −7 9 25 . . . 1001

. . . −6 10 26 . . . 1010

. . . −5 11 27 . . . 1011

. . . −4 12 28 . . . 1100

. . . −3 13 29 . . . 1101

. . . −2 14 30 . . . 1110

. . . −1 15 31 . . . 1111

At this point we just have to decide which numbers we interpret as positive and
which as negative. We would like to have an equal number of positive and negative
numbers, where we include 0 among the positive ones. From this consideration
we can see that 0, . . . , 7 should be positive and −8, . . . ,−1 should be negative
and that the highest bit of the 4-bit binary representation tells us if the number is
positive or negative.

Just for verification, let’s check that 7 + (−7) ≡mod 16 0:

0 1 1 1
+ 11 01 01 1

(1) 0 0 0 0

We can obtain −x from x in the bit representation by first complement-
ing all the bits and then adding 1. In fact, the addition of x with its bitwise

Lecture 2: Ints 6

complement (written ∼x) always consists of all 1’s, because in each posi-
tion we have a 0 and a 1, and no carries at all. Adding one to the number
11 . . . 11 will always result in 00 . . . 00, with a final carry of 1 that is ignored.
We can write this as a handy formula to compute ∼x given x:

−x = ∼x+ 1

These considerations also show that, regardless of the number of bits,
−1 is always represented as a string of 1’s.

In 4-bit numbers, the maximal positive number is 7 and the minimal
negative number is −8, thus spanning a range of 16 = 24 numbers. In
general, in a representation with p bits, the positive numbers go from 0
to 2p−1 − 1 and the negative numbers from −2p−1 to −1. It is remarkable
that because of the origin of this representation in modular arithmetic, the
“usual” bit-level algorithms for addition and multiplication can ignore that
some numbers are interpreted as positive and others as negative and still
yield the correct answer modulo 2p.

However, for comparisons, division, and modulus operations the sign
does matter. We discuss division below in Section ??. For comparisons,
we just have to properly take into account the highest bit because, say,
−1 ≡mod 16 15, but −1 < 0 and 0 < 15.

5 Hexadecimal Notation

In C0, we use 32 bit integers. Writing these numbers out in decimal nota-
tion is certainly feasible, but sometimes awkward since the bit pattern of
the representation is not easy to discern. Binary notation is rather expan-
sive (using 32 bits for one number) and therefore difficult to work with.
A good compromise is found in hexadecimal notation, which is a represen-
tation in base 16 with the sixteen digits 0–9 and A–F . “Hexadecimal” is
often abbreviated as “hex”. In the concrete syntax of C0 and C, hexadeci-
mal numbers are preceded by 0x in order to distinguish them from decimal

Lecture 2: Ints 7

numbers.
binary hex decimal
0000 0x0 0
0001 0x1 1
0010 0x2 2
0011 0x3 3
0100 0x4 4
0101 0x5 5
0110 0x6 6
0111 0x7 7
1000 0x8 8
1001 0x9 9
1010 0xA 10
1011 0xB 11
1100 0xC 12
1101 0xD 13
1110 0xE 14
1111 0xF 15

Hexadecimal notation is convenient because most common word sizes
(8 bits, 16 bits, 32 bits, and 64 bits) are multiples of 4. For example, a 32
bit number can be represented by eight hexadecimal digits. We can even
do a limited amount of arithmetic on them, once we get used to calculating
modulo 16. Mostly, though, we use hexadecimal notation when we use
bitwise operations rather than arithmetic operations.

6 Useful Powers of 2

The drive to expand the native word size of machines by making circuits
smaller was influenced by two different considerations. For one, since the
bits of a machine word (like 32 or 64) are essentially treated in parallel in
the circuitry, operations on larger numbers are much more efficient. For
another, we can address more memory directly by using a machine word
as an address.

A useful way to relate this to common measurements of memory and
storage capacity is to use

210 = 1024 = 1K

Note that this use of “1K” in computer science is slightly different from
its use in other sciences where it would indicate one thousand (1, 000). If
we want to see how much memory we can address with a 16 bit word we

Lecture 2: Ints 8

calculate
216 = 26 ∗ 210 = 64K

so roughly 64K cells of memory each usually holding a byte which is 8 bits
wide). We also have

220 = 210 ∗ 210 = 1, 048, 576 = 1M

(pronounced “1 Meg”) which is roughly 1 million and

230 = 210 ∗ 210 ∗ 210 = 1, 073, 741, 824 = 1G

(pronounced “1 Gig”) which is roughly 1 billion.
In a more recent processor with a word size of 32 we can therefore ad-

dress
232 = 22 ∗ 210 ∗ 210 ∗ 210 = 4GB

of memory where “GB” stands for Gigabyte.
The next significant number would be 1024GB which would be 1TB

(Terabyte).

7 Integer Division and Modulus

The division and modulus operators on integers are somewhat special. As
a multiplicative inverse, division is not always defined, so we adopt a dif-
ferent definition. We write x/y for integer division of x by y and x%y for
integer modulus. The two operations must satisfy the property

(x/y) ∗ y + (x%y) = x

so that x%y is like the remainder of division. The above is not yet sufficient
to define the two operations. In fact, x/y = 0 and x%y = x for all x and y
would satisfy this property, but this is clearly not what we want. In addi-
tion we say that 0 ≤ |x%y| < |y|. Still, this leaves open the possibility that
the modulus is positive or negative when y does not divide x evenly. We
fix this by stipulating that integer division truncates its result towards zero.
This means that the modulus must be negative if x is negative and there is
a remainder, and it must be positive if x is positive. Thus, 7%5 = 2 and
−7%5 = −2.

Another way to satisfy the above property under the constraint that
0 ≤ |x%y| < |y| is for x/y to always truncate down (towards −∞), which
means that the remainder x%y is positive exactly when y is positive. With
such definition, these two operations are called quotient and remainder,
respectively. In C0, x/y and x%y implement integer division and integer

Lecture 2: Ints 9

modulus. There are no primitive operators in C0 for quotient and remain-
der, but they can be implemented with the ones at hand.

Of course, the above constraints are impossible to satisfy when y = 0,
because 0 ≤ |x%0| < |0| is impossible. But division by zero is defined to
raise an error, and so is the modulus.

8 Bitwise Operations on Ints

Ints are also used to represent other kinds of data. An example is colors
(discussed further in Section ??). The so-called ARGB color model divides
an int into four 8-bit quantities. The highest 8 bits represent the opaque-
ness of the color against its background, while the lower 24 bits represent
the intensity of the red, green and blue components of a color. Manipulat-
ing this representation with addition and multiplication is quite unnatural;
instead we usually use bitwise operations.

The bitwise operations are defined by their action on a single bit and
then applied in parallel to a whole word. The tables below define the mean-
ing of bitwise and &, bitwise exclusive or ^ and bitwise or |. We also have bitwise
negation ~ as a unary operation.

And Exclusive Or Or Negation

& 0 1

0 0 0

1 0 1

^ 0 1

0 0 1

1 1 0

| 0 1

0 0 1

1 1 1

~ 0 1

1 0

9 Shifts

We also have some hybrid operators on ints, somewhere between bit-level
and arithmetic. These are the shift operators. We write x << k for the result
of shifting x by k bits to the left, and x >> k for the result of shifting x by k
bits to the right. In both cases, the value of k must be between 0 (inclusive)
and 32 (exclusive) — any other value is an arithmetic error like division by
zero. We assume below that k is in that range.

The left shift, x << k (for 0 ≤ k < 32), fills the result with zeroes on
the right, so that bits 0, . . . , k − 1 will be 0. Every left shift corresponds to a
multiplication by 2 so x << k returns x∗2k (modulo 232). We illustrate this
with 8-bit numbers.

Lecture 2: Ints 10

The right shift, x >> k (for 0 ≤ k < 32), copies the highest bit while
shifting to the right, so that bits 31, . . . , 32− k of the result will be equal to
the highest bit of x. If viewing x as an integer, this means that the sign of
the result is equal to the sign of x, and shifting x right by k bits corresponds
to integer division by 2k except that it truncates towards −∞. For example,
-1 >> 1 == -1.

Lecture 2: Ints 11

10 Representing Colors

As a small example of using the bitwise interpretation of ints, we consider
colors. Colors are decomposed into their primary components red, green,
and blue; the intensity of each uses 8 bits and therefore varies between
0 and 255 (or 0x00 and 0xFF). We also have the so-called α-channel which
indicates how opaque the color is when superimposed over its background.
Here, 0xFF indicates completely opaque, and 0x00 completely transparent.

Example 3. For example, to extract the intensity of the red color in a given pixel p,
we could compute (p >> 16) & 0xFF. The first shift moves the red color value
into the bits 0–7; the bitwise and masks out all the other bits by setting them to 0.
The result will always be in the desired range, from 0–255.

Conversely, if we want to set the intensity of green of the pixel p to the value of g
(assuming we already have 0 ≤ g ≤ 255), we can compute (p & 0xFFFF00FF) | (g << 8).
This works by first setting the green intensity to 0, while keep everything else the
same, and then combining it with the value of g, shifted to the right position in the
word.

Lecture 2: Ints 12

11 Exercises

Exercise 1 (sample solution on page ??). Integer division in C0 always rounds
its result towards zero. In particular -3/2 is equal to -1. An alternative, adopted
in programming languages like Python, is for division to round towards −∞.
In this case, -3 divided by 2 is equal to -2. As explained in Section ??, this
alternative division is called the quotient and the associated notion of modulus is
the remainder.

Write functions quot and rem that implement the quotient and remainder
operations. Your functions should have the property that

quot(x,y)*y + rem(x,y) == x;

for all ints x and y unless quot overflows.

Exercise 2 (sample solution on page ??). Write a function int2hex that re-
turns a string containing the hexadecimal representation of a given integer as a
string. Your function should have prototype

string int2hex(int x);

(The prototype of a function is the function without its body: the prototype gives
the function name and the type of its arguments.)

Exercise 3 (sample solution on page ??). Write a function lsr (logical shift
right), which is like right shift (>>) except that it fills the most significant bits with
zeroes instead of copying the sign bit. Explain what lsr(x,1) means on integers
in two’s complement representation.

Exercise 4 (sample solution on page ??). Rewrite the functions POW and f (the
mystery function) from Chapter ?? so that they signal an error in case of an over-
flow rather than silently working in modular arithmetic. You can use the statement
error("Overflow"); to signal an overflow. Don’t worry about catching over-
flow with a negative base — that’s a little more complicated.

Exercise 5 (sample solution on page ??). Determine whether or not each of the
two expressions given on each line below are equal for all int values of x and y. If
they are not, give a specific counterexample.

1. ~(x & ~y) | (y | x) and 0xFFFFFFFF

2. (x ^ y) ^ (y ^ x) ^ x and x ^ y

3. ((x >> 16) << 16) and x & 0xFFFF0000

Exercise 6 (sample solution on page ??). Using bitwise operations, implement
the C0 function opacify(p) that returns the result of making the pixel p totally
opaque (i.e., setting its alpha value to 255, while retaining the values of the color
channels). Assume that the pixels are represented as ints.

Lecture 2: Ints 13

Exercise 7 (sample solution on page ??). The C0 function pixel_by_half(p)
returns a pixel whose values for the alpha, red, green and blue channels are half of
the value of respective channels of the pixel p given as an input. The following
function is an attempt to implement pixel_by_half.

int pixel_by_half(int p) {
int alpha = (0xFF000000 & p) / 2;
int red = (0x00FF0000 & p) / 2;
int green = (0x0000FF00 & p) / 2;
int blue = (0x000000FF & p) / 2;
return alpha | red | green | blue;

}

Does this function work as intended? If not, think of counterexamples where it
does not work and rewrite the function so that it does?

Lecture 2: Ints 14

Sample Solutions

Solution of exercise ?? Quotient and remainder differ from quotient and
modulus only when the result of performing the division on a calculator
is negative and there are digits after the decimal point. When this is the
case, we simply subtract one from the division and compensate for this by
adding the denominator to the modulus.

#use <util>

int quot(int x, int y)
//@requires y != 0 && !(x == int_min() && y == -1);
{
int q = x/y;
if (q < 0 && x%y != 0) {
q = q - 1;

}
return q;

}

int rem(int x, int y)
//@requires y != 0 && !(x == int_min() && y == -1);
{
int r = x % y;
if (x/y < 0 && r != 0) {
r = r + y;

}
return r;

}

Solution of exercise ?? To solve this problem, we leverage the fact that an
int is 32-bits long in C0. Consequently, each group of four bits corresponds
to one of the digits of its hexadecimal representation — there are eight of
them.

Then, the function int2hex simply needs to isolate each group of 4 bits,
compute the hex digit that corresponds to it, and then include it in the re-
sult. This is done through a for loop with 8 iterations. At each iteration,
we mask the rightmost 4 bits of the number to isolate them, and later use
a shift to do the move the next 4 bits in this position. The helper function
hex_digit2string returns the hex digit corresponding with the 4-bit num-
ber passed to it as input (note the precondition!). We then stitch this digit

Lecture 2: Ints 15

into the overall result using the function string_join from the <string>
library.

The helper function hex_digit2stringmaps each individual 4-bit num-
ber to the corresponding hex digit. This can be done much more succinctly
by noticing that the ASCII code of 1 is one more than that of 0, and similarly
for the other decimal digits. The same is true of the alphabetical letters.
Here’s an extra challenge: using this insight, rewrite hex_digit2string
so that its body consists of no more than three lines.

Lecture 2: Ints 16

#use <string>

string hex_digit2string(int d)
//@requires 0 <= d && d <= 15;
{
if (d == 0) return "0";
if (d == 1) return "1";
if (d == 2) return "2";
if (d == 3) return "3";
if (d == 4) return "4";
if (d == 5) return "5";
if (d == 6) return "6";
if (d == 7) return "7";
if (d == 8) return "8";
if (d == 9) return "9";
if (d == 10) return "A";
if (d == 11) return "B";
if (d == 12) return "C";
if (d == 13) return "D";
if (d == 14) return "E";
if (d == 15) return "F";
assert(false); // This line is unreachable
return "";

}

string int2hex(int x) {
string hex = "";
for (int i = 0; i < 8; i++)
//@loop_invariant 0 <= i && i <= 8;
{
int d = x & 0xF;
hex = string_join(hex_digit2string(d), hex);
x = x >> 4;

}
return hex;

}

Solution of exercise ?? There are many ways to solve this exercise. The one
below shifts x using the built-in right-shift operator. It then constructs a
mask with 1 on the rightmost 32-l bits and 0 in its leftmost l bits. Apply-
ing this mask zeroes out the leftmost l bits while retaining the rightmost
32-l bits.

Lecture 2: Ints 17

int lsr(int x, int l)
//@requires 0 <= l && l <= 31;
{
x = x >> l;
int mask = 0;
for (int i = 0; i < 32-l; i++)
//@loop_invariant 0 <= i && i <= 32-l;
{
mask = mask << 1;
mask = mask | 0x1;

}
return x & mask;

}

Solution of exercise ?? A first attempt at checking for overflow may look
as follows:

int POW (int x, int y)
//@requires y >= 0;
{
if (y == 0)
return 1;

int p = x * POW(x, y-1);
if (x > 0 && p <= 0) error("Overflow");
return p;

}
If what gets returned from a recursive call is ever negative, we know for

sure we have had an overflow. This holds also if this value is 0, but only if
x did not start at 0.

Lecture 2: Ints 18

int f(int x, int y)
//@requires y >= 0;
//@ensures \result == POW(x,y);
{
int r = 1;
int b = x; /* base */
int e = y; /* exponent */
while (e > 0)
//@loop_invariant e >= 0;
//@loop_invariant r * POW(b,e) == POW(x,y);
{
if (e % 2 == 1) {
r = b * r;
if (x > 0 && r <= 0) error("Overflow");

}
b = b * b;
e = e / 2;

}
//@assert e == 0;
return r;

}
Putting a similar check after b = b*b would be incorrect: performing

this computation on the last iteration (when e==1) does not influence the
result of the function and therefore it is unimportant whether it overflows.

This solution assumes that multiplying two positive numbers can only
overflow to a negative number. But this isn’t always the case: for example,
int_max() * int_max() overflows to 1. A better solution is to check that,
whenever a*b==c, that c/a==b. The resulting code is as follows:

Lecture 2: Ints 19

int POW(int x, int y)
//@requires y >= 0;
{
if (y == 0)
return 1;

int p0 = POW(x, y-1);
int p = x * p0;
if (x > 0 && p/x != p0) error("Overflow");
return p;

}

int f(int x, int y)
//@requires y >= 0;
//@ensures \result == POW(x,y);
{
int r = 1;
int b = x; /* base */
int e = y; /* exponent */
while (e > 0)
//@loop_invariant e >= 0;
//@loop_invariant r * POW(b,e) == POW(x,y);
{
if (e % 2 == 1) {
int r0 = r;
r = b * r0;
if (x > 0 && r/b != r0) error("Overflow");

}
b = b * b;
e = e / 2;

}
//@assert e == 0;
return r;

}
Note that we had to introduce temporary variables to avoid duplicating

computation.
Note that this isn’t how we’d normally want to detect overflow. We’ll

talk about this later in the course, but we’d rather notice that overflow will
happen before actually causing it, rather than noticing after it happens.

Solution of exercise ??

1. This is always true.

Lecture 2: Ints 20

2. This is not true: consider x = 0 and y = 1.

3. This is always true.

Solution of exercise ?? To make p totally opaque, we want to set its 8 left-
most bits to 1. We can do this with the logical or operator.

int opacify(int p) {
return (p | 0xFF000000);

}

Solution of exercise ?? Consider the pixel 0xFFFFFFFF. The expected re-
sult of pixel_by_half(pixel) is 0x7F7F7F7F. For all channels, when
you divide by 2, it simply shifts the bits to the right by 1. For example,
consider the green channel: (0x0000FF00 & 0xFFFFFFFF) / 2 results in
0x0000FF80 rather than 0x00007F00 as we want.

In order to fix this, we need to shift the bits we want to the far right
and divide by 2 first. We need to put the result of the division back to the
original position in the pixel.

int pixel_by_half(int p) {
int alpha = (0x000000FF & (p >> 24)) / 2;
int red = (0x000000FF & (p >> 16)) / 2;
int green = (0x000000FF & (p >> 8)) / 2;
int blue = (0x000000FF & p) / 2;
return (alpha << 24) | (red << 16) | (green << 8) | blue;

}

