
15-122: Principles of Imperative Computation Spring 2024

Lab 14: Spend Some Cycles Thinking Tuesday April 16th

Collaboration: In lab, we encourage collaboration and discussion as you work through the prob-

lems. These activities, like recitation, are meant to get you to review what we've learned, look

at problems from a di�erent perspective and allow you to ask questions about topics you don't

understand. We encourage discussing problems with other students in this lab!

Setup: Download the lab handout and code from the course website, and move it to your private

directory in your unix.qatar.cmu.edu machine. Following that create a directory, move the handout

to it, and unzip the handout �le by executing the following commands:� �
% mkdir lab_14
% mv 14-handout.tgz lab_14
% cd lab_14
% tar -xvf 14-handout.tgz� �
Submission:

Create a tar �le by executing the command below and submit it to autolab, under the lab name:� �
% tar cfzv handin.tgz graph-search.h graph-search.c graph-test.c graph.c� �
The graph interface

This lab involves implementing a graph using an adjacency matrix rather than an array of adjacency

lists. Graphs will be speci�ed by the following C interface (as in graph.h):

typedef unsigned int vertex;
// typedef ______* graph_t;
// typedef ______* neighbors_t;

// New graph with v vertices
graph graph_new(unsigned int v);
//@ensures \result != NULL;

void graph_free(graph G);
//@requires G != NULL;

unsigned int graph_size(graph G);
//@requires G != NULL;

bool graph_hasedge(graph G,
vertex v,
vertex w);

//@requires G != NULL;
//@requires v < graph_size(G);
//@requires w < graph_size(G);

void graph_addedge(graph G, vertex v, vertex w);
//@requires G != NULL;
//@requires v != w;
//@requires v < graph_size(G);
//@ensures w < graph_size(G);
//@requires !graph_hasedge(G, v, w);

neighbors_t graph_get_neighbors(graph_t G, vertex v);
//@requires G != NULL && v < graph_size(G);
//@ensures \result != NULL;

bool graph_hasmore_neighbors(neighbors_t nbors);
//@requires nbors != NULL;

vertex graph_next_neighbor(neighbors_t nbors);
//@requires nbors != NULL;
//@requires graph_hasmore_neighbors(nbors);

void graph_free_neighbors(neighbors_t nbors);
//@requires nbors != NULL;

© Carnegie Mellon University 2024



Representing undirected graphs with an adjacency matrix

In class, we discussed the adjacency list implementation of graphs. In this lab, we'll work through

the adjacency matrix implementation.

Recall that if a graph has n vertices, then its adjacency matrix adj is an n × n array of booleans

such that adj[i][j] is true if there is an edge from vertex i to vertex j (for valid i and j), false
otherwise. Since the graph is undirected, if adj[i][j] is true, then adj[j][i] should also be

true, and if adj[i][j] is false, then adj[j][i] should also be false. The graph should not

have any self-loops (i.e., a vertex with an edge to itself).

(2.a) Complete the data structure invariant function is_graph that returns true if G points to a

valid graph given the de�nition above, or false otherwise.

Make sure to capture the fact that the graph is undirected in your data structure invariant! Compare

notes with a neighbor before you move on.1.5pt

(2.b) Complete the graph_new function that creates a new graph using a dynamically-allocated 2D

array of boolean for the adjacency matrix. Create the 2D array in two steps: �rst create a new

1D array of type bool*, then for each array element, have it point to a new 1D array of type

bool. You can then access the array using the 2D notation (e.g., G->adj[0][1] = true).

Note: Don't ever do this in practice! C has ways of supporting 2D arrays that don't require an

extra array of pointers; you'll learn about this more e�cient way of doing things in later classes,

like 15-213.

(2.c) Complete the functions graph_hasedge that checks if an edge is in the graph and graph_addedge
that adds a new edge to the graph.

(2.d) Complete the graph_free function that frees any dynamically-allocated memory for the given

graph G.

The functions graph_get_neighbors, graph_hasmore_neighbors, graph_next_neighbor and

graph_free_neighbors have been pre-implemented for you at the very bottom of �le graph.c,
but for an extra challenge write them yourself.

Once you are done implementing the functions above, you should have a complete graph.c. Compile

your code and test it with the given DFS and BFS searches in graph-search.c and the given graphs
in graph-test.c:� �
% make graphtest
% ./graphtest� �
All tests should pass. (Look at the graphs in graph-test.c to see why.) Be sure to use valgrind
also to make sure you have freed all memory you allocated!3pt

2



Testing for graph connectedness

We say that a graph G is connected if there is a path from any vertex to any other vertex in G.1

For example the following graph is connected:

In an undirected graph, this de�nition is equivalent to saying that there is a path from a single

arbitrary vertex to any other vertex. Can you see why?

(3.a) Write a function connected(G) in graph-search.c that returns true if a graph G is con-

nected, or false otherwise. Make sure your implementation is as e�cient as possible.

Hint: Your function should work similarly to BFS, but it should count the number of vertices

visited. For a connected graph, the total should be a speci�c value. Test your function on

several graphs, connected and not connected.

(3.b) Write at least two test cases in graph-test.c: one where connected returns true, and one

where it returns false.4pt

1A graph where there is an edge from any vertex to any other vertex is called complete. Complete graphs are a

special case of connected graphs.

3


