
15-122: Principles of Imperative Computation Spring 2024

Lab 13: PasswordLab Tuesday April 2nd

Collaboration: In lab, we encourage collaboration and discussion as you work through the prob-
lems. These activities, like recitation, are meant to get you to review what we've learned, look
at problems from a di�erent perspective and allow you to ask questions about topics you don't
understand. We encourage discussing problems with other students in this lab!

Setup: Download the lab handout and code from the course website https://cs.cmu.edu/ 15122/hand-
outs/code, and move it to your private directory in your unix.qatar.cmu.edu machine. Following
that create a directory, move the handout to it, and unzip the handout �le by executing the following
commands:� �
% mkdir lab_13
% mv 13-handout.tgz lab_13
% cd lab_13
% tar -xvf 13-handout.tgz� �
Submission:

Create a tar �le by executing the command below and submit it to autolab, under the lab name:� �
% tar cfzv handin.tgz answers.txt� �
Dr. Evil's passwords

Genius supervillian Dr. Evil is on the loose! Known for a series of devilishly tricky yet completely
vulnerable assembly bombs, Dr. Evil has left a trail of destruction across Carnegie Mellon's under-
graduate computer science curriculum. Authorities have been unable to track the whereabouts of
this mastermind, but we have new intelligence on Dr. Evil's Super Secret Evil PlanTM to investigate.

You have been hired as an agent to crack the code of Dr. Evil's Super Secret Evil Plan. It seems
that she left her secret plans in a password protected c0 binary �le, accessible to you on the
cluster computers by typing evilplan. She also accidentally left her C0VM bytecode in a public
folder! She seems to have deleted most of the helpful comments, though, so we'll need help �guring
out the passwords by hand. We were also able to acquire the main function's source code in
password-main.c0, but it relies on functions that only appear in the bytecode �le password.bc0.

You'll need to read through password.bc0 to �gure out some of the function calls � namely, the
function calls password1(), password2(), password3(), etc.

Each of the password functions either takes in a password as input, and returns a boolean, or simply
returns the password as an integer. Some passwords are numbers while others are strings. For the
�rst four passwords the user's input is passed to parse_int, but for the last password the string is
passed directly to the function. We've �lled in the bytecode �le with all the intelligence we have,
so you'll have to �gure out the rest.

A description of relevant C0VM bytecode instructions is given in appendix.

To check if you're correct, just run the password binary �le, and type in the passwords you think
are correct:� �
% evilplan
Welcome to Dr. Evil’s Super Secret Evil Plan Terminal
This terminal should only be run by Dr. Evil to read the
Super Secret Evil Plan.
If you are anyone else, get OUT.

© Carnegie Mellon University 2024

Password1:� �

2

Partial ASCII Table

32 20 64 40 @ 96 60 ‘
33 21 ! 65 41 A 97 61 a
34 22 " 66 42 B 98 62 b
35 23 # 67 43 C 99 63 c
36 24 $ 68 44 D 100 64 d
37 25 % 69 45 E 101 65 e
38 26 & 70 46 F 102 66 f
39 27 ’ 71 47 G 103 67 g
40 28 (72 48 H 104 68 h
41 29) 73 49 I 105 69 i
42 2A * 74 4A J 106 6A j
43 2B + 75 4B K 107 6B k
44 2C , 76 4C L 108 6C l
45 2D - 77 4D M 109 6D m
46 2E . 78 4E N 110 6E n
47 2F / 79 4F O 111 6F o
48 30 0 80 50 P 112 70 p
49 31 1 81 51 Q 113 71 q
50 32 2 82 52 R 114 72 r
51 33 3 83 53 S 115 73 s
52 34 4 84 54 T 116 74 t
53 35 5 85 55 U 117 75 u
54 36 6 86 56 V 118 76 v
55 37 7 87 57 W 119 77 w
56 38 8 88 58 X 120 78 x
57 39 9 89 59 Y 121 79 y
58 3A : 90 5A Z 122 7A z
59 3B ; 91 5B [123 7B {
60 3C < 92 5C \ 124 7C |
61 3D = 93 5D] 125 7D }
62 3E > 94 5E ^ 126 7E ∼
63 3F ? 95 5F _

(1.a) Dr. Evil's �rst password function seems pretty simple.
It seems to return an integer. What is it?1.5pt

(1.b) Dr. Evil's second password is a bit more complicated.
It uses vload and vstore to store some local vari-
ables. Figure out what integer password2 returns!

(1.c) Dr. Evil's third password is de�nitely more compli-
cated. It uses ildc to load integers from the integer
pool. What's going on there? For this password, note
that returning 1 is equivalent to returning true, and
returning 0 is equivalent to returning false.3pt

(1.d) Dr. Evil's fourth password has a loop! The function
jumps around, doing something to an integer input.
What's the password?

(1.e) Dr. Evil's �fth and �nal password calls a helper func-
tion, func5. Figure out what it's doing, and crack the
last password! The ASCII table to the right, which
includes both integer and hex values, may come in
handy.4pt

(1.f) For the most clever of agents, Dr. Evil seems to have
left a hidden 6th password. She didn't activate it in
the source code �le, which means it must have been
so complicated even she didn't want to deal with it!
Figure it out through the bytecode, and tell your TA
if you think you got it.

3

Appendix: Selected C0VM bytecode reference

Stack operations
0x57 pop S, v -> S
0x59 dup S, v -> S, v, v
0x5F swap S, v1, v2 -> S, v2, v1

Arithmetic
0x60 iadd S, x:w32, y:w32 -> S, x+y:w32
0x64 isub S, x:w32, y:w32 -> S, x-y:w32
0x68 imul S, x:w32, y:w32 -> S, x*y:w32
0x6C idiv S, x:w32, y:w32 -> S, x/y:w32
0x70 irem S, x:w32, y:w32 -> S, x%y:w32
0x7E iand S, x:w32, y:w32 -> S, x&y:w32
0x80 ior S, x:w32, y:w32 -> S, x|y:w32
0x82 ixor S, x:w32, y:w32 -> S, x^y:w32
0x78 ishl S, x:w32, y:w32 -> S, x<<y:w32
0x7A ishr S, x:w32, y:w32 -> S, x>>y:w32

Constants
0x10 bipush S -> S, x:w32 (x = (w32)b, sign extended)
0x13 ildc <c1,c2> S -> S, x:w32 (x = int_pool[(c1<<8)|c2])
0x14 aldc <c1,c2> S -> S, a:* (a = &string_pool[(c1<<8)|c2])
0x01 aconst_null S -> S, null:*

Local Variables
0x15 vload <i> S -> S, v (v = V[i])
0x36 vstore <i> S, v -> S (V[i] = v)

Assertions and errors
0xBF athrow S, a:* -> S (c0_user_error(a))
0xCF assert S, x:w32, a:* -> S (c0_assertion_failure(a) if x == 0)

Control Flow
0x00 nop S -> S
0x9F if_cmpeq <o1,o2> S, v1, v2 -> S (pc = pc+(o1<<8|o2) if v1 == v2)
0xA0 if_cmpne <o1,o2> S, v1, v2 -> S (pc = pc+(o1<<8|o2) if v1 != v2)
0xA1 if_icmplt <o1,o2> S, x:w32, y:w32 -> S (pc = pc+(o1<<8|o2) if x < y)
0xA2 if_icmpge <o1,o2> S, x:w32, y:w32 -> S (pc = pc+(o1<<8|o2) if x >= y)
0xA3 if_icmpgt <o1,o2> S, x:w32, y:w32 -> S (pc = pc+(o1<<8|o2) if x > y)
0xA4 if_icmple <o1,o2> S, x:w32, y:w32 -> S (pc = pc+(o1<<8|o2) if x <= y)
0xA7 goto <o1,o2> S -> S (pc = pc+(o1<<8|o2))

Functions
0xB8 invokestatic <c1,c2> S, v1, v2, ..., vn -> S, v

(function_pool[c1<<8|c2] => g, g(v1,...,vn) = v)
0xB0 return ., v -> . (return v to caller)
0xB7 invokenative <c1,c2> S, v1, v2, ..., vn -> S, v

(native_pool[c1<<8|c2] => g, g(v1,...,vn) = v)

Memory
0xBB new <s> S -> S, a:* (*a is now allocated, size <s>)
0x2E imload S, a:* -> S, x:w32 (x = *a, a != NULL, load 4 bytes)
0x4E imstore S, a:*, x:w32 -> S (*a = x, a != NULL, store 4 bytes)
0x2F amload S, a:* -> S, b:* (b = *a, a != NULL, load address)
0x4F amstore S, a:*, b:* -> S (*a = b, a != NULL, store address)

4

0x34 cmload S, a:* -> S, x:w32 (x = (w32)(*a), a != NULL, load 1 byte)
0x55 cmstore S, a:*, x:w32 -> S (*a = x & 0x7f, a != NULL, store 1 byte)
0x62 aaddf <f> S, a:* -> S, (a+f):* (a != NULL; f field offset in bytes)
0xBC newarray <s> S, n:w32 -> S, a:* (a[0..n) now allocated,

each array element has size <s>)
0xBE arraylength S, a:* -> S, n:w32 (n = \length(a))
0x63 aadds S, a:*, i:w32 -> S, (a->elems+s*i):*

5

