
15-122: Principles of Imperative Computation Spring 2024

Lab 12: All Sorts of Sorts Tuesday March 26th

Collaboration: In lab, we encourage collaboration and discussion as you work through the prob-

lems. These activities, like recitation, are meant to get you to review what we've learned, look

at problems from a di�erent perspective and allow you to ask questions about topics you don't

understand. We encourage discussing problems with other students in this lab!

Setup: Download the lab handout and code from the course website, and move it to your private

directory in your unix.qatar.cmu.edu machine. Following that create a directory, move the handout

to it, and unzip the handout �le by executing the following commands:� �
% mkdir lab_12
% mv 12-handout.tgz lab_12
% cd lab_12
% tar -xvf 12-handout.tgz� �
Submission:

To submit, create a tar �le by executing the command below and submit it to autolab, under the

lab name:� �
% tar cfzv handin.tgz gsort-test.c gsort.c� �
Generic sort

Today we will explore the di�erence between void* in C0 and void* in C, and exploit that di�erence

to write a generic sort in C.

The image above shows a 16 byte allocation where each byte contains an 8-bit value. The actual

size of a byte in C is implementation-de�ned and so can be 8 bits or more. You can pretty much

count on a byte being 8 bits on current computers.

If we have a pointer A whose value is 0xB58, then the way we interpret that pointer depends on the

type of the pointer. As a char*, the pointer A points to the value 0x48 or ’H’, the �rst character

in the NUL-terminated string "Hello, everyone". As an int32_t*, the pointer A points to a

signed integer, the �rst element in an array of four integers. (According to the implementation-

de�ned behavior we usually expect, this array contains the four integers 1819043144, 1696607343,

2037540214, and 6647407.) If A is a void*, then we know nothing about how to interpret, read

from, or write to this block of memory.

In this lab, we will write a function that sorts arrays without knowing anything about how to

interpret, read from, or write to the memory addresses in that array. The client will tell us how

many elements there are (count) and the size of each element (elt_size). The client will also tell

us how to interpret (with a comparison function) and manipulate (with a swap function) elements

of the array.

typedef int compare_fn(void *x, void *y) // Compares the values at x and y
/*@requires x != NULL && y != NULL; @*/ ;

typedef void swap_fn(void *x, void *y) // Swaps the values at locations x and y
/*@requires x != NULL && y != NULL; @*/ ;

© Carnegie Mellon University 2024



void gsort(void *A, size_t count, size_t elt_size,
compare_fn *cmp, swap_fn *swp)

/*@requires A != NULL && cmp != NULL && swp != NULL; @*/
/* requires that A is an allocation of at least count * elt_size bytes */ ;

The interface above is provided in lib/gsort.h. Your implementation in gsort.c is one of the

very small number of cases in C where it is acceptable to cast a void* to another pointer type

without being absolutely certain what type the void* originally was. (Remember that it was never

acceptable to do this in C1.)

If a client asks us to sort the 5 two-byte values starting at the void pointer 0xB58, then we know

that the �ve elements in the array have the addresses 0xB58, 0xB5A, 0xB5C, 0xB5E, and 0xB60. We

can calculate the address of the array element that the client thinks of as A[3] by casting A to a

char* and then writing either (A + 6) or &A[6]. This makes sense because a char is always one

byte and because 6 is the array o�set (3) times the size of an array element in bytes (2).1.5pt

All we need to do to sort is calculate the addresses where array elements begin and pass these

addresses to the client functions. The client's functions know how to compare and swap values

given the addresses of those values. Because you are writing the sorting algorithm without knowing

what values are being stored, you shouldn't ever access the memory in the array directly.

(1.a) In �le gsort.c, complete the function gsort that implements a generic sort according to the

strategy described above. A C0 version of selection sort is given to you below and in sort.c0.
Don't worry about translating its contracts but do include contracts that preempt basic NULL
pointers dereferences. You can test your code by running:� �
% make
% ./a.out� �

3pt

(1.b) Modify gsort-test.c to sort arrays of frequency counts by both frequency and by word

(according to the string.h function strcmp).4pt

Selection sort in C0

1 void sort(int[] A, int n)
2 //@requires 0 <= n && n <= \length(A);
3 //@ensures is_sorted(A, 0, n);
4 {
5 for (int i = 0; i < n; i++)
6 //@loop_invariant 0 <= i && i <= n;
7 //@loop_invariant is_sorted(A, 0, i);
8 //@loop_invariant le_segs(A, 0, i, A, i, n);
9 {

10 int min = i;
11 for (int j = i + 1; j < n; j++)
12 //@loop_invariant i < j && j <= n;
13 //@loop_invariant i <= min && min < n;
14 //@loop_invariant le_seg(A[min], A, i, j);
15 {
16 if (A[j] < A[min])
17 min = j;

2



18 }
19 swap(A, i, min);
20 }
21 }

3


