
15-122: Principles of Imperative Computation Spring 2024

Lab 10: This One's a Treet Tuesday March 19th

Collaboration: In lab, we encourage collaboration and discussion as you work through the prob-

lems. These activities, like recitation, are meant to get you to review what we've learned, look

at problems from a di�erent perspective and allow you to ask questions about topics you don't

understand. We encourage discussing problems with other students in this lab!

Setup: Download the lab handout and code from the course website, and move it to your private

directory in your unix.qatar.cmu.edu machine. Following that create a directory, move the handout

to it, and unzip the handout �le by executing the following commands:� �
% mkdir lab_10
% mv 10-handout.tgz lab_10
% cd lab_10
% tar -xvf 10-handout.tgz� �
Submission:

To submit, create a tar �le by executing the command below and submit it to autolab, under the

lab name:� �
% tar cfzv handin.tgz bst.c1� �
In-order traversal

One of the most important properties of a binary search tree is that it maintains its elements in

sorted order. The tree structure makes it easy to �nd, add, and remove elements in their correct

position, but we haven't yet seen how to examine each element from smallest to largest. This is

called an in-order traversal.

There are a few di�erent ways to implement in-order traversal for a binary search tree. In this

lab, we'll be using a stack to keep track of the nodes we still need to examine during traversal.

Speci�cally, whenever we follow the left child of a node, we push the node onto the stack

so we can come back to it later and visit its right subtree. Here's an example showing each step

of a traversal (visited nodes have a green check mark next to them and the nodes on the stack are

circled):

Notice how at each step, the next element we need to examine is at the top of the stack. Also notice

that the next() function returns each of the values in sorted order.

© Carnegie Mellon University 2024

(1.a) Suppose a traversal is in the state shown to the right of this

text (with only node C in the traversal stack). What will the

stack contain after the traversal is advanced by one? By two?

Which values will be returned?
1.5pt

Reviewing the BST implementation

This implementation is slightly di�erent from lecture � we're using void* as the elem type, and

we're treating the entire element as a key. We still have two (possibly NULL) pointers left and

right. We show the interface to generic stacks (implemented in lib/stack.o1) for convenience.

/*** Implementation of BSTs ***/
typedef void* elem;
typedef int compare_fn(elem x, elem y)
/*@requires x != NULL && y != NULL; @*/ ;

typedef struct tree_node tree;
struct tree_node {

elem data;
tree* left;
tree* right; };

typedef struct bst_header bst;
struct bst_header {

tree* root;
compare_fn* compare; // Non-NULL };

/*** Interface to generic stacks ***/
typedef struct stack_header* stack_t;
typedef void* stackelem;
bool stack_empty(stack_t S)
/*@requires S != NULL; @*/;

stack_t stack_new()
/*@ensures \result != NULL; @*/
/*@ensures stack_empty(\result); @*/;

void push(stack_t S, stackelem x)
/*@requires S != NULL; @*/;

stackelem pop(stack_t S)
/*@requires S != NULL; @*/
/*@requires !stack_empty(S); @*/;

Implementing the traversal

There are two parts to the in-order traversal implementation. First, we need a function that gives

us the starting traversal stack (which represents the �rst element we need to look at). Once we have

a traversal stack, we need a way to move ahead in the traversal to look at the next element.

(2.a) In �le bst.c1, implement the function bst_traverse_start. This function returns the

initial traversal stack that we'll use to begin our traversal (as in the �rst step of the diagram

above). The stack should contain all the nodes on the path from the root to the minimum

element, with the minimum element at the top of the stack.

(2.b) In �le bst.c1, implement the function bst_traverse_next. Each time this function is called,

the next smallest element in the tree is returned. Given a traversal stack, this function should

do three things:

(a) Retrieve the data at the current node (which is at the top of the traversal stack)

(b) Modify the stack so that it represents the next node in the in-order traversal of the tree

(c) Return the retrieved data

Also, implement the one-line function bst_traverse_finished, which returns whether or

not the given traversal stack has been advanced past the last element in the tree. This should

be used in a precondition of bst_traverse_next.

You can test your code using: cc0 -d -x lib/stack.o1 bst.c1 test-traverse.c13pt

2

Comparing tree contents

Since there are multiple valid BSTs that contain the same elements, it is not possible to check if

two BSTs contain the same elements by just comparing their structure. In-order traversal can solve

this.

(3.a) In �le bst.c1, implement the function bst_equal, which returns whether or not two BSTs

contain the same elements. You may assume that the two trees use the same comparison

function.

You can test your code using: cc0 -d -x lib/stack.o1 bst.c1 test-equal.c14pt

3

