
15-122: Principles of Imperative Computation Spring 2024

Lab 08: Hash This! Tuesday March 12th

Collaboration: In lab, we encourage collaboration and discussion as you work through the prob-
lems. These activities, like recitation, are meant to get you to review what we've learned, look
at problems from a di�erent perspective and allow you to ask questions about topics you don't
understand. We encourage discussing problems with other students in this lab!

Setup:

Download the lab handout and code from the course website https://cs.cmu.edu/ 15122/handout-
s/code, and move it to your private directory in your unix.qatar.cmu.edu machine. Following that
create a directory, move the handout to it, and unzip the handout �le by executing the following
commands:� �
% mkdir lab_08
% mv 08-handout.tgz lab_08
% cd lab_08
% tar -xvf 08-handout.tgz� �
Submission:

To submit, create a tar �le by executing the command below and submit it to autolab, under the
lab name:� �
% tar cfzv handin.tgz my-hash-mul32.c0 my-hash-lcg.c0 hash-profs.c0� �
Finding collisions in hash functions

Partial ASCII Table

32 20 64 40 @ 96 60 ‘
33 21 ! 65 41 A 97 61 a
34 22 " 66 42 B 98 62 b
35 23 # 67 43 C 99 63 c
36 24 $ 68 44 D 100 64 d
37 25 % 69 45 E 101 65 e
38 26 & 70 46 F 102 66 f
39 27 ’ 71 47 G 103 67 g
40 28 (72 48 H 104 68 h
41 29) 73 49 I 105 69 i
42 2A * 74 4A J 106 6A j
43 2B + 75 4B K 107 6B k
44 2C , 76 4C L 108 6C l
45 2D - 77 4D M 109 6D m
46 2E . 78 4E N 110 6E n
47 2F / 79 4F O 111 6F o
48 30 0 80 50 P 112 70 p
49 31 1 81 51 Q 113 71 q
50 32 2 82 52 R 114 72 r
51 33 3 83 53 S 115 73 s
52 34 4 84 54 T 116 74 t
53 35 5 85 55 U 117 75 u
54 36 6 86 56 V 118 76 v
55 37 7 87 57 W 119 77 w
56 38 8 88 58 X 120 78 x
57 39 9 89 59 Y 121 79 y
58 3A : 90 5A Z 122 7A z
59 3B ; 91 5B [123 7B {
60 3C < 92 5C \ 124 7C |
61 3D = 93 5D] 125 7D }
62 3E > 94 5E ^ 126 7E ∼
63 3F ? 95 5F _

Recall that a hash function h(k) takes a key k as its argu-
ment and returns some integer, a hash value; we can then
use abs(h(k)%m) as an index into our hash table. In this lab
you will be examining various hash functions and exploiting
their ine�ciencies to make them collide.

It will be convenient to denote a string of length n (for
n > 0) as s0s1s2...sn−2sn−1, where si is the ASCII value of
character i in string s. (A partial ASCII table is given to
the right.) We de�ne four hash functions as follows:

hash_add: h(s) = s0 + s1 + s2 + · · ·+ sn−2 + sn−1

hash_mul32:

h(s) = (. . . ((s0×32+s1)×32+s2)×32 · · ·+sn−2)×32+sn−1

hash_mul31:

h(s) = (. . . ((s0×31+s1)×31+s2)×31 · · ·+sn−2)×31+sn−1

hash_lcg:

h(s) = f(f(. . . f(f(f(s0)+s1)+s2) · · ·+sn−2)+sn−1)

where f(x) = 1664525× x+ 1013904223

(1.a) What does each of these functions reduce to when
n=1?

© Carnegie Mellon University 2024

These four hash functions have been implemented for you and can be run from the command line
like this, for example:� �
% hash_add
Enter a string to hash: bar

hash value = 309
hashes to index 309 in a table of size 1024

Another? (empty line quits):� �
Note that the command line hashing tool also reports where the element with the given key will
hash to given a table size of 1024. This is important because hash tables have a limited size, so we
want to minimize collisions within said size.

The �rst exercise requires you to mathematically reverse-engineer one of the simpler hash functions:

(1.b) Find three or more strings, each string containing three or more characters, that would always
collide because they have the same hash value using hash_add.1.5pt

2

Now, let's work through a more complicated real-world example: hashing an entire dictionary. We
would like to know which hashing function would be the best to hash the 64,000 word Scrabble
dictionary. We de�ne a hashing function to be �better� based on how e�ciently it spreads out the
words over the buckets. Obviously, this depends on the size of our hash table: if we have a smaller
hash table, there will naturally be more collisions. That's why we can use a visualizer (implemented
for you in �le visualizer.c0) to see how many words hash to each bucket for a given hash function.

Here is a graphical visualization of each of the four hash functions on the Scrabble dictionary and
a table of size 512. The vertical lines show how many values hashed to that index in the table.

0

c
o
ll
is
io
n
s

264

0

c
o
ll
is
io
n
s

7157

hash_add hash_mul32

0

c
o
ll
is
io
n
s

157

0

c
o
ll
is
io
n
s

157

hash_mul31 hash_lcg

(1.c) Examine carefully these visualizations and comment on how good each hash function is.

3

Your turn to do some coding!

(1.d) Implement your own version of hash_mul32 in �le my-hash-mul32.c0 so that the function
hash_string(s) returns an integer representing the hash value for s using the formula given
on the previous page. The <string> library may be helpful in this. You can use coin to test
your implementation on some input strings, and compare the results by running hash_mul32
on the same strings.

To visualize the collisions, compile your code and run it with the following command:� �
% cc0 -o my-hash-mul32 my-hash-mul32.c0 hash-dictionary.c0 visualizer.c0
% ./my-hash-mul32 -o my-mul32.png
% display my-mul32.png� �

This will output a graphical visualization of your hash function on the dictionary for a table
of size 512, with the vertical lines showing how many values hashed to that index in the table.
Compare your visualization with the one given earlier for hash_mul32. If you are ssh'ing
remember to ssh with -Y or -X! You can run your program with the -n �ag followed by a
di�erent table size if you like.

(1.e) Now, similarly implement hash_lcg in my-hash-lcg.c0, and compile it for the dictionary:� �
% cc0 -o my-hash-lcg my-hash-lcg.c0 hash-dictionary.c0 visualizer.c0
% ./my-hash-lcg -o my-lcg.png
% display my-lcg.png� �

Compare this to what you got with our visualization for hash_lcg.3pt

4

https://c0.cs.cmu.edu/docs/c0-libraries.pdf

Hashing faculty

In �le profs.txt, there is a list of CS faculty info, which we will parse for you into the following
structs. We would like to hash such structs into a hash table (some �elds may be blank):

typedef struct prof_header prof;
struct prof_header {
string name;
string title;
string office;
string email;
int area_code; // 0 if no phone number
int phone; // 0 if no phone number

};

(2.a) In �le hash-profs.c0, implement the function hash_prof(prof* p) that returns a hash
value for a prof_header struct. Your implementation should use the function hash_string
you wrote earlier and hash at least two string �elds from this struct. Then, compile them
against both your hash_mul32 and hash_lcg and compare the resulting visualizations:� �
% cc0 -o profs-mul32 my-hash-mul32.c0 hash-profs.c0 visualizer.c0
% ./profs-mul32 -o profs-mul32.png

% cc0 -o profs-lcg my-hash-lcg.c0 hash-profs.c0 visualizer.c0
% ./profs-lcg -o profs-lcg.png� �

Compare your visualizations with those of your neighbors, who probably de�ned hash_prof
di�erently from you. Try and understand what makes a better hashing function! Hint: try
lowering the bucket size by passing the additional �ag -n <num buckets> to your executables
as there are way less faculty than words in the Scrabble dictionary.

For full credit, the maximum bucket size on the default table of size 512 should be 12 or lower
when compiled using hash_lcg, and the visualizations should indicate a good hash function.

4pt

5

