
15-122: Principles of Imperative Computation Spring 2024

Lab 02: What's the Point Tuesday January 16th

Collaboration: In lab, we encourage collaboration and discussion as you work through the prob-

lems. These activities, like recitation, are meant to get you to review what we've learned, look

at problems from a di�erent perspective and allow you to ask questions about topics you don't

understand. We encourage discussing problems with other students in this lab!

The Integer Logarithm

The (base 2) integer logarithm of a strictly positive number x is the largest integer r such that

2r ≤ x. The function ilog below computes the integer logarithm of its input.

1 int POW2(int x) // computes 2^x
2 //@requires x >= 0;
3 {
4 if (x == 0) return 1;
5 return 2 * POW2(x-1);
6 }
7

8 int ilog(int x) // returns the largest r such that 2^r <= x
9 //@requires x > 0;

10 //@ensures \result >= 0;
11 //@ensures POW2(\result) <= x;
12 {
13 int a = x;
14 int r = 0;
15 while (a > 1)
16 //@loop_invariant a >= 1;
17 //@loop_invariant r >= 0;
18 //@loop_invariant a * POW2(r) <= x;
19 {
20 a = a/2;
21 r++;
22 }
23 //@assert a == 1;
24 return r;
25 }

Notice the speci�cation function POW2(x) which computes 2x. You may assume it is correct without
referring to its code.

In this lab, we will show that ilog is correct, i.e., that its postconditions are true whenever its

preconditions hold.1 Recall that, for a function with a single loop, we go through the following

steps to prove correctness:

� The loop invariants are valid, i.e., each is true INITially and is PREServed by an arbitrary

iteration of the loop.

1Observe however that the postconditions of ilog do not fully match what we expect from a function that computes

the integer logarithm of its input x. Speci�cally, it does not ensure that the returned value is the largest r such that

2r ≤ x. But there is only so much we can do in one lab . . .

© Carnegie Mellon University 2024



� The loop TERMinates.

� The loop invariant and the negation of the loop guard entail the postcondition when we EXIT

the function.

INIT, PRES and EXIT are proved by point-to reasoning. We will focus on those!

INIT

Let's prove INIT for one of the loop invariants (the others are similar and you are encouraged to

prove them on your own).

(2.a) Using point-to reasoning, prove that the �rst loop invariant, on line 16, holds initially.

To Show: a >= 1 before any iteration of the loop

A. by

B. by

C. by

D. a >= 1 by math on (C)

1.5pt

EXIT

Let's continue with EXIT (in what order your prove these parts doesn't matter since you need to

prove them all anyway). Our function has two postconditions, so we'll have two proofs.

(3.a) Using point-to reasoning, complete the proof that the �rst postcondition, on line 10, holds.

To Show: \result >= 0

A. \result == r by line 24

B. by

C. \result >= 0 by

(3.b) Proving that the second postcondition, on line 11, is more involved as it requires doing some

math. But you can do it! (You may not need all lines provided.)

To Show: POW2(\result) <= x

A. \result == r by line 24

B. by

C. by

D. by

E. by

F. by

G. POW2(\result) <= x by

2



PRES

Preservation at last!

(4.a) Complete the proof that the second loop invariant, on line 17, is preserved by an arbitrary

iteration of the loop.

Assuming: r >= 0,
To Show: r‘ >= 0.

A. r >= 0 assumption

B. by

C. by

D. r‘ >= 0 by

3pt

(4.b) The biggie is the third loop invariant on line 18. Complete the following proof that it is

preserved by an arbitrary iteration of the loop. (You may not need all lines provided.)

Assuming: ,

To Show: .

A. assumption

B. (a/2) * 2 <= a by math (since a is positive � line 16)

C. by

D. by

E. by

F. by

G. by

H. by

I. by

J. by

K. by

4pt
For additional practice, you may want to prove on your own that the �rst loop invariant, on line 16,

is also preserved.

TERM

We also need to prove that the loop terminates. Feel free to do so at your leisure.

3


