
15-122: Principles of Imperative Computation, Spring 2023

Written Homework 5

Due on Gradescope: Sunday 12th February, 2023 by 9pm

Name:

Andrew ID:

Section:

This written homework covers pointers, interfaces, and stacks and queues.
This is the first homework to emphasize interfaces. It’s important for you to think

carefully and be sure that your solutions respect the interface involved in the problem.

Preparing your Submission You can prepare your submission with any PDF editor that
you like. Here are a few that prior-semester students recommended:

• PDFescape or DocHub, two web-based PDF editors that work from anywhere.
• Acrobat Pro, installed on all non-CS cluster machines, works on many platforms.
• iAnnotate works on any iOS and Android mobile device.

There are many more — use whatever works best for you. If you’d rather not edit a PDF,
you can always print this homework, write your answers neatly by hand, and scan it into
a PDF file — we don’t recommend this option, though.

Caution Recent versions of Preview on Mac are buggy: annotations get occasionally
deleted for no reason. Do not use Preview as a PDF editor.

Submitting your Work Once you are done, submit this assignment on Gradescope. Al-
ways check it was correctly uploaded. You have unlimited submissions.

Question: 1 2 3 Total

Points: 4 6 2.5 12.5

Score:

https://www.gradescope.com/courses/480030
http://www.pdfescape.com
https://dochub.com/
https://www.cmu.edu/computing/software/all/
https://www.iannotate.com/
https://www.gradescope.com/courses/480030

15-122 Written Homework 5 Page 1 of 9

1.4pts Pointer Illustration

Clearly and carefully illustrate the contents of memory after the following code runs.
We’ve drawn the contents of w, a pointer that points into allocated memory where the
number 0 is stored.

int* w = alloc(int);
int i = 12;
int* p = alloc(int);
int* q = p;
int* r = alloc(int);
int** x = alloc(int*);
int** y = alloc(int*);
int** z = y;

*r = i + 4;

*y = q;

**z = 4;

*x = r;
q = NULL;
i = *p + **y;

You may draw a variable or memory
location containing NULL either as

or as

© Carnegie Mellon University 2023

15-122 Written Homework 5 Page 2 of 9

2. Implementing an Image Type Using a Struct

In a previous programming assignment, you implemented image manipulations where

• we used a one-dimensional array to represent a two-dimensional image,
• neither the width nor the height of the image could be 0,
• their product should be at most int_max() so that every position in the array

can be indexed with an int.

We want to write a library that packages an abstract type of images and some basic
operations to work with them. Your first job is to complete the interface of this library.
Your interface should support any representation of images, not just the one you saw
in the programming assignment.

You may assume the client has access to the pixel interface and some basic image
utility functions reproduced in appendices A and B at the end of this homework. Feel
free to use the added function pixel_equal if you need it.

2.11pt Complete the interface for the image data type. Add appropriate preconditions
and postconditions for each image operation to ensure the client can’t use the
interface unsafely. The postconditions should give the client enough information
to prove the safety of subsequent calls. (You may not need all the lines we provided.)

// typedef ______* image_t;

image_getwidth()

image_getheight()

© Carnegie Mellon University 2023

15-122 Written Homework 5 Page 3 of 9

2.21pt (Continued)

image_getpixel(image_t A, int row, int col)

void image_setpixel(image_t A, int row, int col, pixel_t px)

2.31pt (Continued)

image_new(width, height)

© Carnegie Mellon University 2023

15-122 Written Homework 5 Page 4 of 9

In the implementation of the image data type, we have the following concrete type
definitions:

struct image_header {
int width;
int height;
pixel_t[] data;

};
typedef struct image_header image;
typedef image* image_t;

And the following data structure invariant:

bool is_image(image* A) {
return A != NULL

&& A->width > 0
&& A->height > 0
&& A->width <= int_max() / A->height
&& is_arr_expected_length(A->data, A->width * A->height);

}

The client does not need to know about this function, since it is the job of the imple-
mentation to preserve the validity of the image data structure. But the implementa-
tion must use this specification function to assure that the image is valid before and
after any image operation.
Note that the type pixel_t is abstract and can only be manipulated using the func-
tions listed in Appendix A.

2.41.5pts Write an implementation for image_setpixel, assuming pixels are stored in the
pixel array in the exact same way they were stored in the programming assign-
ment. Include any necessary preconditions and postconditions for the imple-
mentation.

© Carnegie Mellon University 2023

15-122 Written Homework 5 Page 5 of 9

2.51.5pts Write an implementation for image_getheight. Include any necessary precon-
ditions and postconditions for the implementation.

© Carnegie Mellon University 2023

15-122 Written Homework 5 Page 6 of 9

3. Queues, Stacks, and Interfaces

3.11pt Consider the following interface for queues that stores elements of type bool:

/* Queue Interface */
// typedef ______* queue_t;

bool queue_empty(queue_t Q) // O(1), check if queue empty
/*@requires Q != NULL; @*/;

queue_t queue_new() // O(1), create new empty queue
/*@ensures \result != NULL; @*/
/*@ensures queue_empty(\result); @*/;

void enq(queue_t Q, bool e) // O(1), add item at back of queue
/*@requires Q != NULL; @*/;

bool deq(queue_t Q) // O(1), remove item from front
/*@requires Q != NULL; @*/
/*@requires !queue_empty(Q); @*/ ;

Using this interface, write a client function queue_back(queue_t Q) that returns
the element at the back of the given queue, assuming the queue is not empty. The
back of a queue is the most recently inserted element — do not confuse it with
the element returned by deq, the front of the queue, i.e., the element that has
been in the queue the longest. Upon returning, the queue Q should be identical
to the queue passed to the function. For this task, use only the interface since, as a
client, you do not know how this data structure is implemented. Do not use any
queue functions that are not in the interface (including specification functions
like is_queue since these belong to the implementation).

bool queue_back(queue_t Q)
//@requires Q != NULL;
//@requires !queue_empty(Q);
{

}

© Carnegie Mellon University 2023

15-122 Written Homework 5 Page 7 of 9

Below is the stack interface from lecture (with elements of type bool).

// typedef ______* stack_t;

bool stack_empty(stack_t S) // O(1), check if stack empty
/*@requires S != NULL; @*/;

stack_t stack_new() // O(1), create new empty stack
/*@ensures \result != NULL; @*/
/*@ensures stack_empty(\result); @*/;

void push(stack_t S, bool x) // O(1), add item on top of stack
/*@requires S != NULL; @*/;

bool pop(stack_t S) // O(1), remove item from top
/*@requires S != NULL; @*/
/*@requires !stack_empty(S); @*/

The following is a client function stack_reverse that is intended to return a copy of
its input stack S with its elements in reverse order while leaving S unchanged.

stack_t stack_reverse(stack_t S)
//@requires S != NULL;
//@ensures \result != NULL;
{
stack_t RES = stack_new();
stack_t TMP = S;
while (!stack_empty(S)) {
bool x = pop(S);
push(TMP, x);
push(RES, x);

}
while (!stack_empty(TMP)) push(S, pop(TMP));
return RES;

}

3.20.5pts In one or two sentences, explain why stack_reverse does not work.

© Carnegie Mellon University 2023

15-122 Written Homework 5 Page 8 of 9

3.31pt Give a corrected version of stack_reverse. Your code may only use stacks.

stack_t stack_reverse(stack_t S)
//@requires S != NULL;
//@ensures \result != NULL;
{

}

© Carnegie Mellon University 2023

15-122 Written Homework 5 Page 9 of 9

A Appendix: the pixel interface

See your pixels programming assignment for the contracts these functions obey and
what they do. However, don’t assume the implementation in the assignment.

// typedef _______ pixel_t;

int get_red(pixel_t p);
int get_green(pixel_t p);
int get_blue(pixel_t p);
int get_alpha(pixel_t p);

pixel_t make_pixel(int alpha, int red, int green, int blue);

// Returns true if p and q are the same pixel, false otherwise
bool pixel_equal(pixel_t p, pixel_t q); // ADDED

B Appendix: image utility functions — imageutil.c0

See your images programming assignment for the contracts these functions obey and
what they do. However, don’t assume the implementation in the assignment.

bool is_valid_imagesize(int width, int height);

int get_row(int index, int width, int height);
int get_column(int index, int width, int height);

bool is_valid_pixel(int row, int col, int width, int height);

int get_index(int row, int col, int width, int height);

© Carnegie Mellon University 2023

	Appendix: the pixel interface
	Appendix: image utility functions — 'imageutil.c0'

