15-122: Principles of Imperative Computation, Spring 2023
Written Homework 1

Due on Gradescope: Sunday 15" January, 2023 by 9pm

Name:

Andrew ID:

Section:

This written homework is the first of two homeworks that will introduce you to the way
we reason about CO code in 15-122. It also makes sure that you have a good understand-
ing of key course policies.

Preparing your Submission You can prepare your submission with any PDF editor that
you like. Here are a few that prior-semester students recommended:

* PDFescape or DocHub, two web-based PDF editors that work from anywhere.
* Acrobat Pro, installed on all non-CS cluster machines, works on many platforms.
* iAnnotate works on any iOS and Android mobile device.

There are many more — use whatever works best for you. If you’d rather not edit a PDF,
you can always print this homework, write your answers neatly by hand, and scan it into
a PDF file — we don’t recommend this option, though.

Caution Recent versions of Preview on Mac are buggy: annotations get occasionally
deleted for no reason. Do not use Preview as a PDF editor.

Submitting your Work Once you are done, submit this assignment on Gradescope. Al-
ways check it was correctly uploaded. You have unlimited submissions.

If you haven't yet enrolled in Gradescope for this class, please do so by completing the
setup lab (see Piazza or the course web page).

Question: 1 2 3 4 5 Total
Points: 2.5 2 3 3.5 4 15

Score:

https://www.gradescope.com/courses/480030
http://www.pdfescape.com
https://dochub.com/
https://www.cmu.edu/computing/software/all/
https://www.iannotate.com/
https://www.gradescope.com/courses/480030
https://www.gradescope.com/courses/480030
https://piazza.com/cmu/spring2023/15122q/home

15-122 Written Homework 1 Page 1 of 11

2.5pts

1. Policies

1.1 Collaboration Policy

Read the collaboration policy on the course website. For every statement in each
scenario, mark whether it is OK or not OK according to the collaboration policy.
Take each action to be independent from others.

a. Ben and Alexandra are on Zoom while completing a written homework.
not
OK OK

O O Ben has already partially completed the homework and keeps it in
view on his computer while discussing it with Alexandra.

O O Alexandra screenshares the blank homework writeup so they can
both reference it.

O O Alexandra asks Ben to check her work on Task 2 by reading her
answer out loud.

O O Ben takes notes while brainstorming approaches and uses them to
complete the homework later.

O O Alexandra draws a diagram on the whiteboard to explain this loop
invariant proof.

b. Atto is trying to work on his programming homework and asks Amanda for
advice.

not
OK OK

O O Atto forgets how to transfer files to AFS and Amanda tells him the
correct scp command.

O O Amanda teaches Atto some vim shortcuts.

O O Atto screenshares his code and asks Amanda to help him figure
out a bug.

O O Amanda screenshares the blank homework writeup so they figure
out what Task 2 is asking them to do.

O O Atto writes out his pseudocode onto a shared whiteboard

O O Amanda says: “Just use two for loops, one for each array. You
then create a variable outside of both loops and just compare val-
ues to find the overall maximum”.

O O Amanda says: “The writeup said that we want to find the maxi-
mum from these two arrays. If you're stuck, I found it helpful to
look at the sorting lecture notes.”

O O Atto asks Amanda to go over his code after both of them have
made their final submission, even though grades have not been
released. Amanda agrees and walks him through her answers.

© Carnegie Mellon University 2023

https://web2.qatar.cmu.edu/~mhhammou/15122-s23

15-122 Written Homework 1 Page 2 of 11

¢. Mihir and Rachel are studying for a midterm together.
not
OK OK

O O Rachel screenshares the review slides so that the two of them can
tigure out a confusing concept from lecture.

O O Mihir draws out an array on a shared whiteboard to better under-
stand a sorting problem in the practice midterm.

O O Mihir asks a student from a previous iteration of the course for
the midterm from that semester so that he could use the exam as
practice.

O O Mihir asks Rachel how she did a question on a previous, already
graded written assignment.

O O Rachel looks up code for a previous programming assignment on
GitHub to figure out how to complete a particularly challenging
task.

O O Mihir takes notes during their study session and uses them when
creating his allowed exam notes.

d. Angela is retaking the course.
not
OK OK

O O To check her work, she looks at the written she did in a previous
semester.

Q O Her friend Cooper did very well in the course. When Angela gets
stuck on a task, she walks Cooper through her approach.

O O She just doesn’t understand what task 5 of the current program-
ming homework is asking about. She asks her roommate Pranav,
who completed the course two years ago, to explain it to her.

Q O VSCode stopped working for her. After closing all her assignment
tiles, she asks her other roommate, Ryan, who also completed the
course two years ago, to help her reset it.

O O During the break before classes starts, Angela goes over all her past
assignments that use contracts to make sure she has a good grasp
on them this time around, takes detailed notes, and uses them as
to complete this semester’s assignment.

O O She is concerned about the upcoming lecture on amortized analy-
sis and reads the lecture notes ahead of time to prepare.

© Carnegie Mellon University 2023

15-122 Written Homework 1 Page 3 of 11

Opts

1.2 MOSS

This part is ungraded but meant to help you think about how MOSS, the software
service we use to check for plagiarized code, works. For each statement give your
best guess at the right answer. Make sure to come back to it and check the actual
correct answers.

a. Roger is stuck on the last two tasks of the programming homework. Nikita

sends him her code for them and he changes all variable names before sub-
mitting. Will MOSS detect this?

definitely / verylikely / veryunlikely / impossible

b. Roger finds code for the current programming homework on GitHub, mod-
ifies it and then submits it. Will MOSS detect this?

definitely / verylikely / veryunlikely / impossible

c. Roger asks Pranav, a student who completed the course three semesters ago,
for his code for the programming homework. Roger makes cosmetic changes
and submits. Will MOSS detect this?

definitely / verylikely / veryunlikely / impossible

d. Roger retakes the course and discovers that the next programming home-
work is the same as when he took it the first time around. He doesn’t look
at his old solution, but he is worried that his new code may be too similar to
his old code. Will MOSS detect a similarity?

definitely / verylikely / veryunlikely / impossible

© Carnegie Mellon University 2023

https://theory.stanford.edu/~aiken/moss/

15-122 Written Homework 1 Page 4 of 11

Opts 1.3 Academic Integrity Violation Consequences

This part is ungraded but meant to help you think about the consequences of
cheating. For each statement give your best guess at the right answer. Make sure
to come back to it and check the actual correct answers.

a. Iliano and Dilsun were caught cheating on task 3 of the current written as-
signment. Both get reported. What will happen to their grade?
O they get a zero on task 3
O they get a zero for the whole assignment
Q they get a negative grade for the whole assignment
O they fail the course

b. Ryan, a student from a previous semester, got caught giving his code to Il-
iano who is currently taking the course. What will happen to Ryan?

O nothing
Q he gets reported and nothing else

O he gets reported and is given a symbolic zero on that assignment
O he gets reported and his course grade is lowered by one letter grade
O he gets suspended

c. Iliano was reported for an academic integrity violation in a history course
last semester and is being reported again this semester for copying code.
What will happen to him?

O nothing besides the new report

Q he will appear in front of an academic review board (ARB) and be given
a stern lecture
O he will appear in front of an ARB and most likely be suspended

Q he will appear in front of an ARB and most likely be expelled

Opts 1.4 Academic Integrity Contract

Now that you had a chance to reflect on the collaboration policy of the course, we
ask you to complete and sign the contract on the next page. By doing this, you
declare that you understand the course policy on academic integrity and commit
to abide by it. Like any contract, read it carefully. Please reach out to the course
staff if you have any questions.

Although this task is worth 0 points, failure to complete and sign the contract
will carry a penalty of -500 points, i.e., guaranteed failure in the course.

© Carnegie Mellon University 2023

15-122 — Principles of Imperative Computation, Spring 2023

The value of your degree depends on the academic integrity of yourself and your peers in each
of your classes. It is expected that, unless otherwise instructed, the work you submit as your
own will be your own work and not someone else’s work or a collaboration between yourself and
other(s).

Please read carefully the academic integrity policy of this course and the University Policy on
Academic Integrity carefully to understand the penalties associated with academic dishonesty
at Carnegie Mellon. In this class, cheating/copying/plagiarism means copying all or part of a
program or homework solution from another student or unauthorized source such as the Internet,
giving such information to another student, having someone else do a homework or take an exam
for you, reusing answers or solutions from previous editions of the course, or giving or receiving
unauthorized information during an examination. In general, each solution you submit (quiz,
written assignment, programming assignment, midterm or final exam) must be your own work.
In the event that you use information written by another person in your solution, you must cite
the source of this information (and receive prior permission if unsure whether this is permitted).
It is considered cheating to compare complete or partial answers, copy or adapt others’ solutions,
read other students’ code or show your code to other students, or sit near another person who is
taking the same course and complete an assignment together. Writing code for others to see (e.g.,
on a whiteboard) is never permitted. It is also considered cheating for repeating students to reuse
their solutions from a previous semester, or any instructor-provided sample solution.

It is a violation of this policy to hand in work for other students.

Your course instructors reserve the right to determine an appropriate penalty based on the vio-
lation of academic dishonesty that occurs. Penalties are severe: a typical violation of the university
policy results in the student failing this course, but may go all the way to expulsion from Carnegie Mellon
University. If you have any questions about this policy and any work you are doing in the course,
please feel free to contact your instructors for help.

We will be using the MOSS system to detect software plagiarism.

By checking the second box below, you commit to performing a chicken dance in front of the TAs
at office hours. Most people do not check this box.

It is not considered cheating to clarify vague points in the assignments, lectures, lecture notes, or
to give help or receive help in using the computer systems, compilers, debuggers, profilers, or
other facilities, but you must refrain from looking at other students” code while you are getting
or receiving help for these tools. It is not cheating to review graded assignments or exams with
students in the same class as you, but it is considered unauthorized assistance to share these
materials between different iterations of the course. Do not post code from this course publicly
(e.g., to Bitbucket or GitHub).

[] Ihave read the statements above and reviewed the course policy for cheating and plagiarism.

|] Tagree to the clause in paragraph 6.

By signing below, I commit to abiding by these policies in this course.

Andrew ID

Name (print) Section

Signature Date

https://cs.cmu.edu/~15122/about.shtml#AIP
http://www.cmu.edu/policies/documents/Academic%20Integrity.htm
http://www.cmu.edu/policies/documents/Academic%20Integrity.htm
https://theory.stanford.edu/~aiken/moss/

15-122 Written Homework 1 Page 6 of 11

1pt

2. Running CO0 Programs

Assume we have the files num. c0 and num-test. c0. The file num. cO contains a func-
tion num that takes an integer argument and returns an integer. The file num-test. c0
contains this main function (and nothing else):

int main() {
int x = num(29202209);
return Xx;

}

How to run this program? Check out a relevant page in the CO Tutorial at https:
//bitbucket.org/c0-1lang/docs/wiki/Tutorial and answer the following ques-
tions.

2.1 From the command line, show how to display the value returned by num(29202209)
using the CO compiler.

2.2 From the command line, show how to display the value returned by num(29202209)
using the CO0 interpreter.

© Carnegie Mellon University 2023

https://bitbucket.org/c0-lang/docs/wiki/Tutorial
https://bitbucket.org/c0-lang/docs/wiki/Tutorial
https://bitbucket.org/c0-lang/docs/wiki/Tutorial

15-122 Written Homework 1 Page 7 of 11

3pts

3. Preconditions and Postconditions

For the following functions, either check the box that says the postcondition always
holds when the function is given inputs that satisfy its preconditions or give a con-
crete counterexample: specific values of the inputs such that the preconditions (if
there are any) holds and the postcondition does not hold. You don’t have to write

any proofs.
int fl(int x, int y) int f2(int x)
//@requires 0 <= x & X < y; //@requires x % 2 == 0;
//@ensures \result >= 0; //@ensures x < 0 || \result < x;
{ {
return y - Xx; return x / 2;
} }
@ensures always true? @ensures always true?
X = y: X =
int f3(int x, int y) int f4(int x, int y)
//@requires y > 0; //@requires x + y == 5;
//@ensures \result < vy; //@ensures \result - x == vy;
{ {
return x % y; return 5;
} }
@ensures always true? @ensures always true?
o=l |yl el Lyl
int f5(int x, int y) int f6(int x, int y)
//@ensures \result < 0; //@ensures \result >= 0;
{ {
if (x > 0) x = -x; if (x >= 0) x = -x;
if (y >0)y=-y; if (y >=0) y = -y;
if (y < x) { if (y <= x) {
return y - X; return y - Xx;
} else { } else {
return x - vy; return x - vy;
} }
} }
@ensures always true? @ensures always true?
X = y: X = y:

© Carnegie Mellon University 2023

15-122 Written Homework 1 Page 8 of 11

4. Thinking about Loops

When we think about loops in 15-122, we will always concentrate on a single arbitrary
iteration of the loop. A loop will almost always modify something; the following loop
modifies the local assignable i.

while (i < n) {
i=1+ 4;

}

In order to reason about the loop, we have to think about the two different values
stored in the local assignable i during an iteration.

We use the variable i to talk about the value stored in the local i before the loop runs
(before the loop guard is checked for the first time).

We use the “primed” variable ¢’ to talk about the value stored in the local i after the
loop runs exactly one more time (before the loop guard is next checked).

4.1 Consider the following loop:

while (a < n) {

c=2xb - c;
b=3=xb+ a;
a=a-1;

}

* Ifa=6,b=2,and c = 7, then assuming 6 < n,

a = b = ,and ¢ =

* Ifa =3y, b=x+y,and c = 2y, then assuming 3y < n, in terms of = and vy,

a = b = ,and ¢ =

¢ If b = ¢, then assuming a < n, in terms of ¢ and ¢,

a = b = ,and ¢ =

¢ In general, assuming a < n, then in terms of a, b, and c,

a = , b = ,and ¢ =

Note that we always say “assuming (something) < n,” because if that were not
the case the loop wouldn’t run, and it wouldn’t make any sense to be talking
about the values of the primed variables.

© Carnegie Mellon University 2023

15-122 Written Homework 1

Page 9 of 11

1pt

1.5pts

4.2 Consider this loop:
while (...) {
a=a+ 3;

b=Db=x2+ a;

C

}

c+a - b;

Be careful, it looks similar but is trickier! Give simplified answers.

* Ifa=7,b=3 and c = 9, then assuming the loop guard evaluates to true,

a =

V=

,and ¢ =

¢ In general, assuming the loop guard evaluates to true, then in terms of a, b,
and ¢,

a =

b =

/
,and ¢ = ,

4.3 Consider this loop:
while (a >0 || b > 0) {

if (a < b) {
b =b-a;
} else {
a = a-b;
}

e Ifa=42and b = 17, then

a =

and b’ =

* Ifa = x + y and b = x, where z is a small positive integer and y is a small
non-negative integer, then

a =

e [fa=zandb=2x+ z,

a =

and b =

where z and z are both small positive integers, then

and b =

* If a > 0 and b > 0, one of the two cases above will always be true. Therefore,
we can conclude which of the following about the values stored in a and b
after an arbitrary iteration of the loop? (Check all that apply)

|

a>0and b >0
a >0and v >0
a >0and?t >0
a>0and bt >0

© Carnegie Mellon University 2023

15-122 Written Homework 1 Page 10 of 11

1pt

5. Proving a Function Correct

In this question, we’ll do part of the proof of correctness for a function compute_sum
relative to a specification function SUM. You may assume that the loop invariants have
already been proved to be valid.

int

compute_sum(int n) {

int sum = 0;
while (n > 0) {

}

sum = sum + n;
n=n-1;

return sum;

}

5.1

=

N

11

12

14

15

16

17

18

19

20

21

22

23

Complete the specification function below with the simple mathematical formula
that gives the sum of numbers from 0 to n.

int SUM(int n)
//@requires 0 <= n && n < 22151;
{

return ;

}

Give a postcondition for compute_sum using this specification function.

int compute_sum(int num_ints)
//@requires 0 <= num_ints && num_ints < 22151;

//@ensures ;

{

int n = num_ints;
int sum = 0;
while (n > 0)
//@loop_invariant 0 <= n;
//@loop_invariant n <= 22151;
// Additional loop invariant will go here
{
sum = sum + n;
n=n-1;
}

return sum;

}

Note: in the real world we wouldn’t have an efficient closed-form solution used as a
specification function for an inefficient loop-based solution. We usually use the slow,
simple version as the specification function for the fast one!

© Carnegie Mellon University 2023

15-122 Written Homework 1 Page 11 of 11

0.5pts 5.2 Had we not introduced the local variable n on line|12/and used num_ints instead,

compute_sum would not compile. Explain why.

Why was it necessary to add the new local n in the second version of compute_sum?
Hint: try compiling this code.

1.5pts 5.3 Using SUM everywhere possible, give a suitable extra invariant that would allow

us to prove the function correct. (Consider creating a table with values that change
during the loop.)

7| //@Loop—invariant ;

Which line numbers would we point to to justify that n == 0 after the loop?

Substitute in 0 for n in your loop invariant on line(17]and then simplify.

If your last answer is correct, substituting \result for sum in the simplified ver-
sion will yield exactly the postcondition on line This proves that the loop
invariant and the negation of the loop guard imply the postcondition.

1pt 5.4 Termination arguments for loops (in this class) must have the following form:

During an arbitrary iteration of the loop, the expression o gets strictly
larger / smaller , but this expression can’t get larger /smaller than
on which the loop guard is false.

Why does the loop in compute_sum terminate?

During an arbitrary iteration of the loop, the expression

gets strictly larger / smaller ,

but this expression can’t get larger / smaller than on
which the loop guard is false.

© Carnegie Mellon University 2023

