
15-122: Principles of Imperative Computation Spring 2023
Recitation 03: Function Family Reunion Thursday January 26th

Big-O definition
The definition of big-O has a lot of mathematical symbols in it, and so can be very confusing at
first. Let’s familiarize ourselves with the formal definition and get an intuition behind what it’s
saying.

O(g(n)) is a set of functions, where f(n) ∈ O(g(n)) if and only if:

there is some and some

such that for all .

Big-O intuition

To the left of n0, the functions can do anything.
To its right, c g(n) is always greater than or equal to f(n).

Intuitively, O(g(n)) is the set of all functions that g(n) can outpace in the long run (with the help of
a constant scaling factor). For example, n2 eventually outpaces 3n log(n) + 5n, so 3n log(n) + 5n ∈
O(n2). Because we only care about long run behavior, we generally can discard constants and can
consider only the most significant term in a function.

There are actually infinitely many functions that are in O(g(n)): If f(n) ∈ O(g(n)), then 1
2f(n) ∈

O(g(n)) and 1
4f(n) ∈ O(g(n)) and 2f(n) ∈ O(g(n)). In general, for any constants k1, k2, k1f(n) +

k2 ∈ O(g(n)).

Checkpoint 0
Using the formal definition of big-O, prove that n3 + 9n2 − 7n+ 2 ∈ O(n3).

c = , n0 =

To show: (expand c and n0)

A. n ≥ by assumption

B. by

C. by

D. by

E. by

F. by

Recitation 03: Function Family Reunion Page 2 of 4

Simplest, tightest bounds
Something that will come up often with big-O is the idea of a simple and tight bound on the runtime
of a function.

It’s technically correct to say that linear search is in O(3n + 2) where n is the length of the input
array, but O(3n+ 2) consists of the exact same functions as O(n), which is simpler.

It’s also technically correct to say that binary search, which takes around log n steps on an array of
length n, is O(n!), since n! > log n for all n > 0 but it’s not very useful. If we ask for a tight bound,
we want the closest bound you can give. For binary search, O(log n) is a tight bound because no
function that grows more slowly than log n provides a correct upper bound for binary search.

Unless we specify otherwise, we want the simplest, tightest bound!

Complexity Classes
Big-O sets in simplest and tightest form are used to summarize the complexity of a given function
— for example n3 +9n2 − 7n+2 ∈ O(n3) highlights that n3 +9n2 − 7n+2 is a cubic function. As
such, big-O sets in simplest and tightest form are called complexity classes.

When working with functions with a single argument, say n, the most common complexity classes
we will encounter in this course are

O(1) ⊂ O(log n) ⊂ O(n) ⊂ O(n log n) ⊂ O(n2) ⊂ O(2n) ⊂ O(n!)

Every function in the big-O set on the left of the subset symbol (⊂) is also a function in the big-O
set on the right (but not necessarily vice versa) — for example O(log n) ⊂ O(n) says that every
function in O(log n) is also in O(n).

We use big-O sets in simplest and tightest form also to classify functions with multiple arguments.

Checkpoint 1
For each of the following big-O sets, give an equivalent big-O set in simplest and tightest form.

O(3n2.5+2n2) can be written more simply as

O(log10 n+log2(7n)) can be written more simply as

One interesting consequence of this second result is that O(logi n) = O(logj n) for all i and j (as
long as they’re both greater than 1), because of the change of base formula:

logi n =
logj n

logj i

But 1
logj i

is just a constant! So, it doesn’t matter what base we use for logarithms in big-O notation.

When we ask for the simplest, tightest bound in big-O, we’ll usually take points off if you write, for
instance, O(log2 n) instead of the simpler O(log n).

Checkpoint 2
Give the complexity class of the following functions:

f(n) = 16n2+5n+2 ∈
g(n,m) = n1.5×16m ∈
h(x, y) = max(x, y)+x2 ∈

2

Recitation 03: Function Family Reunion Page 3 of 4

Checkpoint 3
Determine the big-O complexity of the following function.

1 int bigO_1(int k) {
2 int[] A = alloc_array(int, k); // allocating an k-length array takes O(k) time
3 for (int i = 0; i < k; i++) {
4 for (int j = 1; j < k; j*=2) {
5 A[i] += j;
6 }
7 }
8 int p = 0;
9 while (p < 10) {

10 f(A, k); //assume f takes O(k) time
11 p++;
12 }
13 return A[k-1];
14 }

Always write your complexity in terms of the input variables!

• Line 2 takes time inO()

• The loop on lines 3–7 runs times

– The loop on lines 4–6 runs times

∗ Each run of line 5 takes time inO()

Therefore the loop on lines 4–6 takes time inO()

Therefore the loop on lines 3–7 takes time inO()

• Line 8 takes time inO()

• The loop on lines 9–12 runs times

– Each run of line 10 takes time inO()

– Each run of line 11 takes time inO()

Therefore the loop on lines 9–12 takes time inO()

• Line 13 takes time inO()

Thus, the function bigO_1 takes time in O() to run alto-
gether

3

Recitation 03: Function Family Reunion Page 4 of 4

Checkpoint 4
Determine the big-O class of the following function. You may use the lines on the right for scratch
work.

1 int bigO_2(int[] L, int m, int n)
2 //@requires \length(L) == m && m > 0;
3 {
4 int[] A = alloc_array(int, n); //
5

6 for (int i = 0; i < n; i++) { //
7 for (int j = i; j < n; j++) { //
8 A[i] = i * j; //
9 } //

10 } //
11 int c = m; //
12

13 while (c > 0) { //
14 L[c] += 122; //
15 c /= 4; //
16 } //
17 return L[m/2]; //
18 } //

The big-O class of this function is .

4

