
15-122 Programming Homework 5 Page 1 of 11

15-122: Principles of Imperative Computation, Spring 2023

Programming Homework 5: Clac

Due: Wednesday 22nd February, 2023 by 9pm EDT

In this assignment, you will implement a claculator™ for the Clac programming language.

Download the assignment handout from the course website or Autolab. The file README.txt
in the code handout goes over the contents of the handout and explains how to hand the
assignment in. There is a SEVEN (7) PENALTY-FREE HANDIN LIMIT. Every additional
handin will incur a small (5%) penalty (even if using a late day). Your score for this
assignment will be the score of your last Autolab submission.

A reference implementation of Clac, clac-ref, is available on unix.qatar.cmu.edu —
see README.txt for how to run it. Use it to explore how your implementation is expected
to behave.

Testing We will test your Clac implementation by running tests of the following form:

test_prog(clac_program, state, initial_stack, final_stack, result);

We will check four things:

1. Your code must respect the library interfaces described in the lib directory. We will
compile your code against different implementations of stacks and queues, so you must
only use the functions and types given as part of the interface.

2. When given valid input, your interpreter must run without errors and wind up with
the correct stack.

3. When given invalid input, your interpreter must halt with a call to error(), signaling
that the user has written an invalid program.

4. All operations must have good asymptotic running time when we compile without -d.
(This means that all operations should take constant time except for **, pick and
skip. The time it takes to copy the nth stack element or delete n tokens from the
queue should be in O(n).)

The file clac-test.c0 includes examples of how to write and run tests of this form, and
the README.txt explains how to compile and run these tests.

Sharing tests The academic integrity policy for this course does not allow you to view
other people’s C0 code or share your C0 code with others. However, you may share Clac
code, including Clac-only test cases, via Piazza posts. If you share tests, tag your post with
#clactest.

© Carnegie Mellon University 2023

https://web2.qatar.cmu.edu/~mhhammou/15122-s23
https://autolab.andrew.cmu.edu/courses/15122q-s23
https://autolab.andrew.cmu.edu/courses/15122q-s23
https://piazza.com/cmu/spring2023/15122q/home

15-122 Programming Homework 5 Page 2 of 11

Task 4 asks you to write a small Clac program, but you may find it fun and educational to
try something more challenging as well. Every semester, one or two ambitious students write
prime-number tests in Clac; one student in Fall 2014 wrote an implementation of another
programming language, Bitwise Cyclic Tag, in the Clac language! What will you come up
with?

1 Introducing the Claculator
Clac is a new stack-based programming language developed by a Pittsburgh-area startup
called Reverse Polish Systems (RPS). Any similarities of Clac with Forth or PostScript are
purely coincidental. In the first part of this assignment, we will be implementing the core
features of the Claculator, and later we will be adding a few more interesting features.

Clac works like an interactive calculator. When it runs, it maintains an operand stack.
Entering numbers will simply push them onto the operand stack. When an operation such
as addition + or multiplication * is encountered, it will be applied to the top elements of the
stack (consuming them in the process) and the result is pushed back onto the stack. When
a newline is read, the number on top of the stack will be printed. This is an example where
we start Clac and type 3 4 +, followed by a newline:

% ./clac
Clac top level
clac>> 3 4 +
7

Clac responded by printing 7, which is now on top of the stack (which is otherwise empty).
We now enter -9 2 / and a newline, after which Clac responds with -4.

clac>> -9 2 /
-4

At this point the stack has 7 (the result of the addition) and -4 (the result of the integer
division) and we can subtract them simply by typing - and a newline.

clac>> -
11

We obtain 11, since 7− (−4) = 11. We can quit our interactions by typing quit.

clac>> quit
11
Bye!

We can type multiple inputs (numbers and operations) on the same line. For example,

% ./clac
Clac top level
clac>> 11 10 2 9 - + *
33

© Carnegie Mellon University 2023

15-122 Programming Homework 5 Page 3 of 11

Before After
Stack Queue −→ Stack Queue Cond/Effect

S || n,Q −→ S, n || Q
S, n || print, Q −→ S || Q See note #1
S || quit, Q −→ S || Q See note #2

S, x, y || +, Q −→ S, x+ y || Q See note #3
S, x, y || -, Q −→ S, x− y || Q See note #3
S, x, y || *, Q −→ S, x× y || Q See note #3
S, x, y || /, Q −→ S, x / y || Q See note #4
S, x, y || %, Q −→ S, x% y || Q See note #4
S, x, y || **, Q −→ S, xy || Q See #3, #4
S, x, y || <, Q −→ S, 1 || Q if x < y
S, x, y || <, Q −→ S, 0 || Q if x ≥ y
S, x || drop, Q −→ S || Q

S, x, y || swap, Q −→ S, y, x || Q
S, x, y, z || rot, Q −→ S, y, z, x || Q

S, x || if, Q −→ S || Q if x 6= 0
S, x || if, tok 1, tok 2, tok 3, Q −→ S || Q if x = 0

S, xn, . . . , x1, n || pick, Q −→ S, xn, . . . , x1, xn || Q See note #5
S, n || skip, tok 1, . . . , tokn, Q −→ S || Q See note #5

Clac should raise an error whenever there are not enough tokens on the stack or the queue for an
operation to be performed, or whenever the token on the top of the queue is not one of the ones
listed above. Tokens are case sensitive, so Print and PRINT are not defined, though print is.

Notes:

1. The print token causes n to be printed, followed by a newline.

2. The quit token causes the interpreter to stop. The eval function should then return false
to indicate that we should just stop, rather than asking for more input.

3. This is a 32 bit, two’s complement language, so addition, subtraction, multiplication, and
exponentiation should behave just as in C0 without raising any overflow errors.

4. Division or modulus by 0, or division/modulus of int_min() by -1, which would result in
an arithmetic error according to the definition of C0 (see page 4 of the C0 Reference at
https://c0.cs.cmu.edu/docs/c0-reference.pdf), should raise an error in Clac. Nega-
tive exponents are undefined and should also raise an error.

5. The pick token should raise an error if n, the value on the top of the stack, is not strictly
positive. The skip token should raise an error if n is negative; 0 is acceptable.

Figure 1: Clac reference

© Carnegie Mellon University 2023

https://c0.cs.cmu.edu/docs/c0-reference.pdf
https://c0.cs.cmu.edu/docs/c0-reference.pdf

15-122 Programming Homework 5 Page 4 of 11

Please make sure you understand why the above yields 33 on the stack.
In addition to the arithmetic operations, there are a few special operations you will have

to implement. The table at the top of Figure 1 is the complete set of operations that you
will be implementing in Task 1. To specify the operations, we use the notation

S || Q −→ S ′ || Q′

to mean that the stack S and the queue Q transition to become stack S ′ and the queue Q′.
We use a queue to hold the numbers and operations Clac evaluates (and for other purposes
as well — see below). Stacks are written with the top element at the right end ! For example,
the action of multiplication is stated as

S, x, y || *, Q −→ S, x× y || Q

which means: “When you dequeue the token * from the queue, pop the top element (y) and
the next element (x) from the stack, multiply y by x, and push the result x × y back onto
the stack.” The fact that we write S in the rule above means that there can be many other
integers on the stack that will not be affected by the operation.

Every operation in Clac is determined by the token that has just been dequeued from
the queue. The < and if tokens cause different things to happen depending on the specific
values on the stack.

S, x, y || <, Q −→ S, 1 || Q if x < y

S, x, y || <, Q −→ S, 0 || Q if x ≥ y

In Clac, we use the integer 0 to mean false and we treat non-zero values like 1 as true.
The if token runs some code (the next three tokens) only if the integer on the top of the
stack is true (that is, nonzero). If the if token is reached while 0 is at the top of the stack,
the following three tokens are skipped.

As you implement the Clac operations in Figure 1, if the instructions indicate that Clac
should raise an error, you should call the function error() with the appropriate error
message. The error() function takes a string as its argument and is built into C0, like
assert(). User errors (errors in Clac code) should always cause error() to be called;
assertions should only be used for programmer errors.

© Carnegie Mellon University 2023

15-122 Programming Homework 5 Page 5 of 11

2 Implementing Clac
In file clac.c0, complete the implementation of the function eval. You should not change
any of the #use directives, and you should not change the type of eval, its preconditions,
or its postconditions. Your implementation may not be recursive.

bool eval(queue Q, stack S, state_t ST)
//@requires Q != NULL && S != NULL && ST != NULL;
//@ensures \result == false || queue_empty(Q);

You do not need to worry about the state_t type or the init_state() function until Task
3.

The main function in file clac-main.c0 and the test_prog function in clac-test.c0
both take lines of input and convert them to a queue of tokens. Each token is just a string.
This part of the Clac implementation has already been programmed for you, and you are
welcome to examine it, but you should not change this code. In Clac, tokens are only
separated by white space. For example, 3 4+ will be read as two tokens ("3" followed by
"4+") and will therefore lead to an error since the token "4+" is not defined.

When eval is first called, the stack of integers S will be empty. But since the input
is processed line-by-line, the eval function may also be called with nonempty stacks, rep-
resenting the values from prior computations. The eval function should dequeue tokens
from the queue Q and process them according to the Clac definition. When the queue is
empty, eval should return true, leaving the stack in whatever state it was already in. Upon
encountering the token “quit”, eval should return false, indicating to the main function
that it should exit.

Task 1 (9 points) In clac.c0, make sure the given implementations of print and quit
are safe and correct, fixing them if they are not. Add implementations of +, -, *, **, /, %,
and < according to the specification in Figure 1. Overflow in Clac behaves the same way as
in C0, so don’t worry about dealing with overflow separately.

Task 2 (7 points) In clac.c0, add definitions of drop, swap, rot, if, skip, and pick
according to the specification in Figure 1.

It is possible to write a lot of long and confusing code to safely and efficiently imple-
menting these two tasks, but it is also possible to use helper functions to write very clear
and concise code. As you design your helper functions, remember the conditions we said we
would be checking on the first page!

The interfaces to stacks and queues, which are similar to the ones from lecture, are given
in the lib directory. You may not change these implementations, and you must respect
their interfaces.

3 Dictionaries
Before we can talk about our final Clac feature, definitions, we need to introduce a dictionary
library that will associate names with their definitions. The interface to dictionaries contains
three functions:

© Carnegie Mellon University 2023

15-122 Programming Homework 5 Page 6 of 11

dict_t dict_new()
/*@ensures \result != NULL; @*/ ;

queue_t dict_lookup(dict_t D, string name)
/*@requires D != NULL; @*/ ;

void dict_insert(dict_t D, string name, queue_t def)
/*@requires D != NULL; @*/
/*@requires def != NULL; @*/ ;

Lookup returns the most recently inserted queue for a given name, or NULL if no such queue
exists. Insertion with dict_insert(D, name, def) updates the dictionary so that future
lookups on name will return def. This must handle the case where name is not already
defined in the dictionary, in which case we have to add it, as well as the case where name is
already defined, in which case we have to override or replace the old definition with the new.

4 Definitions
Finally, we add definitions to Clac. A definition has the form

: name token1 . . . tokenn ;

When we encounter the token : (colon) in the input queue, we interpret the following token
as a name. Then we create a new (separate) queue, intended to hold the definition of name.
Then we continue to scan the input queue, copying each token to the new queue until we
encounter a token ; (semicolon) which signals the end of the definition. Then we add name,
with the new queue as its definition, to the dictionary.

If the input queue ends after the colon (:), or if there is no semicolon (;) in the remainder
of the input queue after name, an error should be signaled. In a definition, name can be any
token, but if it is a built-in operator or a number, then the definition can never be invoked
since it is always superseded by the predefined meaning.

Let’s consider a simple example.

: dup 1 pick ;
: square dup * ;

This defines dup and square. Whenever we see square in the input subsequently, it has
the effect of replacing n on the top of the stack with n2. For example,

% clac-ref
Clac top level
clac>> : dup 1 pick ; : square dup * ;
(defined dup)
(defined square)
(stack empty)
clac>> 5 square
25

© Carnegie Mellon University 2023

15-122 Programming Homework 5 Page 7 of 11

Note that 5 square should be identical to 5 1 pick * which duplicates 5 on the stack and
then performs a multiplication.

© Carnegie Mellon University 2023

15-122 Programming Homework 5 Page 8 of 11

How do we process a defined name when we encounter it in the queue of tokens? This is
not entirely straightforward, as the following example illustrates:

clac>> 3 square 4 square +
25

When we see the first occurrence of square we cannot simply replace the rest of the queue
with the definition of square, since after squaring 3 we have to continue to process the rest
of the queue, namely 4 square +.

In order to implement this, we maintain a stack of queues of tokens (which has already
been implemented for you in file lib/stack_of_queue_of_string.o0). This is called the
return stack or sometimes the call stack. When we encounter a defined token, we push the
remainder of the queue onto the return stack, and begin using the definition as our queue
of tokens. When we finish executing a definition we pop the prior queue of tokens from the
return stack and continue with processing it. When there are no longer any queues on the
return stack we return from the eval function. Here’s a trace of the above execution:

Operand Stack Queue of Tokens Return Stack
(empty) 3 square 4 square + (empty)
3 square 4 square + (empty)
3 dup * (4 square +)
3 1 pick (4 square +), (*)
3, 1 pick (4 square +), (*)
3, 3 (empty) (4 square +), (*)
3, 3 * (4 square +)
9 (empty) (4 square +)
9 4 square + (empty)
9, 4 square + (empty)
9, 4 dup * (+)
9, 4 1 pick (+), (*)
9, 4, 1 pick (+), (*)
9, 4, 4 (empty) (+), (*)
9, 4, 4 * (+)
9, 16 (empty) (+)
9, 16 + (empty)
25 (empty) (empty)

After the last step, both the token queue and the return stack are empty, so we return from
the eval function with an operand stack consisting of the single number 25.

If you run this example in the reference Clac interpreter with the -trace option, you’ll
see that the reference interpreter orders the return stack in the other order, so that you
always see the most recent part of the return stack first. The -trace option is not available
in your own Clac implementation.

© Carnegie Mellon University 2023

15-122 Programming Homework 5 Page 9 of 11

5 Implementing Definitions
Before you work on this task, make sure you have tested your previous imple-
mentation yourself and with Autolab. An Autolab submission will also make sure
you have a working backup to go back to. This task is the most challenging part of the
assignment.

How to support definitions in your Clac interpreter? This is where the type state_t de-
fined in clac.c0 comes into play. You’ll modify your existing interpreter to use a dictionary
to store definitions by appropriately defining the type state_t — part of the challenge is
figuring out how to do so. This type is initialized by calling the function init_state() one
time when the Clac interpreter is first run; the pointer that init_state() returns is then
passed back to eval every time it is run. You’ll therefore modify init_state to initialize
your new struct field.

You’ll need to allocate a return stack as well. The return stack can be a part of the
concrete type state_t is defined as, or you can allocate a new return stack whenever eval()
is called.

You may use the same queue from a dictionary more than one time, like the queue associ-
ated with square in the example above. Therefore, it’s important that each time you look up
a queue in the dictionary, you make a copy of it before you dequeue from that queue. The in-
terface to queues in lib/queue_of_string.o0 has a function queue_read_only_copy(Q)
that makes a dequeue-only copy of a queue in O(1) time.

Task 3 (6 points) Modify the state_t type and use it to implement definitions in your
Clac interpreter.

Some Clac examples are given in the files in the def/ directory with the handout. As an
example, here is the definition of the Fibonacci function with several auxiliary names like
noop (which does nothing).

: noop ;
: dup 1 pick ;
: fib dup if fib1 1 skip noop ;
: fib1 dup 1 - if fib_body 1 skip noop ;
: fib_body dup 1 - fib swap 2 - fib + ;

It has the following summary effect:

S, n || fib, Q −→ S, fib(n) || Q

(provided n ≥ 0) where fib is the standard mathematical Fibonacci function. It’s a useful
exercise to work through by hand how, for example, 2 fib computes, starting with the
empty operand and return stacks.

© Carnegie Mellon University 2023

15-122 Programming Homework 5 Page 10 of 11

6 Writing Clac Programs

Task 4 (3 points) Write and submit a file program.clac (not def/program.clac) that
defines a Clac function to compute the GCD of the two topmost stack elements.

Specifically, your definition of gcd should have the following summary effect:

S, n,m || gcd, Q −→ S, d || Q

(provided n,m > 0) where d is the largest integer that divides both m and n. If n ≤ 0 or
m ≤ 0, it doesn’t matter what your Clac program does. You may define as many (or few)
other names in your program as you like, but you must define gcd.

It will be helpful to understand how the definition of Fibonacci (above) works, and it
will also be helpful to code the gcd function in C0 if you haven’t already done so.

Example:

clac>> 1 1 gcd
1
clac>> 3 4 gcd
1
clac>> 6 4 gcd
2
clac>> 35 70 gcd
35
clac>> 15 122 gcd
1
clac>> 122 150 gcd
2
clac>> 40 60 gcd
20

Task 5 (bonus) Write a cool or surprising program of your choice in file bonus.clac.
Describe what your program computes and how to run it as a 1–2 sentence comment at the
top of the file — see def/fib.clac for an example of the format of your comment. Include
a couple of examples of how to call your program at the end of bonus.clac.

The course staff will vote on the coolest and most surprising submissions. The submissions
who get the most votes will be awarded bonus points.

© Carnegie Mellon University 2023

15-122 Programming Homework 5 Page 11 of 11

A REFERENCE: Library Interfaces

A.1 tokenize

/******************************* Interface ******************************/

// Read a line of standard input into a queue
void input_line(queue_t Q)
/*@requires Q != NULL; @*/
/*@requires !eof(); @*/ ;

// Read a whole file into a queue
void input_file(string path, queue_t Q)
/*@requires Q != NULL; @*/;

// Read a string into a queue
void input_string(string s, queue_t Q)
/*@requires Q != NULL; @*/;

You can also display this interface by running the terminal command� �
% cc0 -i lib/tokenize.o0� �
A.2 Stacks and Queues

This assignment makes use of various instances of the stacks and queues libraries seen in
class. Issue the following commands to display their interfaces.

Queues of strings:� �
% cc0 -i lib/queue_of_string.o0� �
Stacks of integers:� �
% cc0 -i lib/stack_of_int.o0� �
Stacks of queues of strings:� �
% cc0 -i lib/stack_of_queue_of_string.o0� �

© Carnegie Mellon University 2023

	Introducing the Claculator
	Implementing Clac
	Dictionaries
	Definitions
	Implementing Definitions
	Writing Clac Programs
	REFERENCE: Library Interfaces
	'tokenize'
	Stacks and Queues

