15-122: Principles of Imperative Computation Spring 2023
Lab 09: Legacy of the void* Tuesday March 21t

Collaboration: In lab, we encourage collaboration and discussion as you work through the prob-
lems. These activities, like recitation, are meant to get you to review what we’ve learned, look
at problems from a different perspective and allow you to ask questions about topics you don’t
understand. We encourage discussing problems with other students in this lab!

Setup: Download the lab handout and code from the course website https: //web2.qatar.cmu.edu/~mhhammou/15:
s23 /schedule.html, and move it to your private directory in your unix.qatar.cmu.edu machine. Fol-

lowing that create a directory, move the handout to it, and unzip the handout file by executing the

following commands:

mkdir lab_09

mv 09-handout.tgz lab_09
cd lab_09

tar -xvf 09-handout.tgz

o® 0% o°

o°

Submission:
To submit, create a tar file by executing the command below and submit it to autolab, under the
lab name:

[% tar cfzv handin.tgz rollcall.cl J

Using generic hash tables

In this lab, we’ll be using the hash dictionaries discussed in lecture.
[xkxokkokokskok ok okkokskokokkokskokkkok ok k. Client Interface sskkskskokskokskskokskokk ok fok sk kok fokx ok k /

typedef voidx* entry;
typedef voidx key;

typedef key entry_key_fn(entry x) // Supplied by client
/*@requires x != NULL; @/ ;
typedef int key_hash_fn(key k); // Supplied by client

typedef bool key_equiv_fn(key k1, key k2); // Supplied by client

/R skskskskokokokokokskskokokokokokokskokokkokok - Library Interface sowssksksokskokskskskokkokokokokokskok ok ok kok /
// typedef ______ * hdict_t;

hdict_t hdict_new(int capacity,
entry_key_fnx entry_key,
key_hash_fnx* hash,
key_equiv_fn*x equiv)
/*@requires capacity > 0; @/
/*@requires entry_key != NULL && hash != NULL && equiv !'= NULL; @x/
/*@ensures \result != NULL; @/ ;

entry hdict_lookup(hdict_t H, key k)
/*@requires H != NULL; @/ ;

void hdict_insert(hdict_t H, entry x)
/*@requires H != NULL && x != NULL; @/ ;

https://web2.qatar.cmu.edu/~mhhammou/15122-s23/schedule.html
https://web2.qatar.cmu.edu/~mhhammou/15122-s23/schedule.html

Lab 09: Legacy of the void* Page 2 of|Z|

Our sample application will be used in checking student attendance. Your code for this should go
in a file called rollcall.cl.

3pt

Lab 09: Legacy of the void* Page 3 of|Z|

(1.a)

(1.b)

(1.c)

Define a struct that represents students. Its fields should include andrew_id (string),
days_present (int), and days_absent (int). You can include other fields if you want,
but you need these fields with these types.

Write out the definition of this struct. Include a typedef so that you can allocate structs
with alloc(student).

Write client functions for a hashtable based on student information. For this lab we will think
of our keys as being Andrew IDs, and therefore be using pointers to strings (stringx) to
represent them. We will think of the entries as being students, and therefore use pointers to
students (studentx) to represent the value.

Hint: Your functions should have the requirement that x and y are both non-NULL and have
stringx* as their tag.

key get_andrewid(entry e);
int hash_andrewid(key x);
bool same_andrewid(key x, key y);

Write a function that initializes a hdict_t with students that have no attendance record.
Don’t worry about what happens if there are duplicates in this array.

hdict_t new_roster(string[] andrew_ids, int len)
//@requires \length(andrew_ids) == len;

At this point, you should create a trivial main() function inside rollcall.cl just to make sure
your code compiles:

{% cc0 -d lib/*.0l rolleall.cl

You'll need to delete this main() function before compiling with test-rollcall.cl below.

(1.d) Write functions that increment a student’s attendance record.

void mark_present(hdict_t H, string andrew_id)
//@requires H != NULL;

void mark_absent(hdict_t H, string andrew_id)
//@requires H !'= NULL;

These functions should manipulate the days_present and days_absent fields stored in the
hash table, so that hdict_lookup can access these fields later on.

Lab 09: Legacy of the void*

Page 4 of |Z|

You can compile and run your code with test-rollcall.cl

% ccO -d lib/*.0l rollcall.cl test-rollcall.cl
% ./a.out
Enrolling bovik, rjsimmon, fp, and niveditc... done.

Student
Student
Student
Student

Student
Student
Student
Student
Done!

gburdell is not enrolled...
bovik is enrolled...
rjsimmon is enrolled...

twm is not enrolled...

bovik: 5 present, 4 absent...
rjsimmon: 8 present, 1 absent...
niveditc: 8 present, 1 absent...
fp: 2 present, 7 absent...

