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Big-O definition
The definition of big-O has a lot of mathematical symbols in it, and so can be very confusing at first.
Let’s familiarize ourselves with the formal definition and get an intuition behind what it’s saying.

O(g(n)) is a set of functions, where f(n) ∈ O(g(n)) if and only if:

there is some and some

such that for all , .

Although it isn’t technically correct set notation, it is also common to write f(n) = O(g(n)).

Big-O intuition

To the left of n0, the functions can do anything.
To its right, c ∗ g(n) is always greater than or equal to f(n).

Intuitively, O(g(n)) is the set of all functions that g(n) can outpace in the long run (with the help of a
constant multiplier). For example, n2 eventually outpaces 3n log(n) + 5n, so 3n log(n) + 5n ∈ O(n2).
Because we only care about long run behavior, we generally can discard constants and can consider only
the most significant term in a function.

There are actually infinitely many functions that are in O(g(n)): If f(n) ∈ O(g(n)), then 1
2f(n) ∈

O(g(n)) and 1
4f(n) ∈ O(g(n)) and 2f(n) ∈ O(g(n)). In general, for any constants k1, k2, k1 ∗ f(n) +

k2 ∈ O(g(n)).

Checkpoint 0
Rank these big-O sets from left to right such that every big-O is a subset of everything to the right of
it. (For instance, O(n) goes farther to the left than O(n!) because O(n) ⊂ O(n!).) If two sets are the
same, put them on top of each other.

O(n!) O(n) O(4) O(n log(n)) O(4n+ 3) O(n2 + 20000n+ 3) O(1) O(n2) O(2n)
O(log(n)) O(log2(n)) O(log(log(n)))

Checkpoint 1
Using the formal definition of big-O, prove that n3 + 300n2 ∈ O(n3).



Simplest, tightest bounds
Something that will come up often with big-O is the idea of a tight bound on the runtime of a function.

It’s technically correct to say that binary search, which takes around log(n) steps on an array of length
n, is O(n!), since n! > log(n) for all n > 0 but it’s not very useful. If we ask for a tight bound, we want
the closest bound you can give. For binary search, O(log(n)) is a tight bound because no function that
grows more slowly than log(n) provides a correct upper bound for binary search.

Unless we specify otherwise, we want the simplest, tightest bound!

Checkpoint 2
Simplify the following big-O bounds without changing the sets the represent:

O(3n2.5 + 2n2) can be written more simply as

O(log10(n) + log2(7n)) can be written more simply as

One interesting consequence of the second result in Checkpoint 2 is that O(logi(n)) = O(logj(n)) for
all i and j (as long as they’re both greater than 1), because of the change of base formula:

logi(n) =
logj(n)

logj(i)

But 1
logj(i)

is just a constant! So, it doesn’t matter what base we use for logarithms in big-O notation.

When we ask for the simplest, tightest bound in big-O, we’ll usually take points of if you write, for
instance, O(log2 n) instead of the simpler O(log n).

Checkpoint 3
Give the simplest, tightest bound for the following functions:

f(n) = 16n2 + 5n+ 2 ∈

g(n,m) = n1.5 × 16m ∈

h(x, y, z) = max(x, y) + z16 ∈

Checkpoint 4
A water main break in GHC has unexpectedly removed for loops and all contracts except for //@assert
from the C0 compiler! Since this means the function below won’t compile anymore, rewrite the for
loop and the contracts so that it will compile, but all the same operations (contract checks, loop guard
checks, assignments. . . ) still happen in the same order as when this code is compiled with the normal
compiler with -d.

1 int search(int x, int[] A, int n)
2 //@requires n == \length(A);
3 //@ensures −1 <= \result && \result < n;
4 {
5 for (int i = 0; i < n; i++)
6 //@loop_invariant 0 <= i;
7 {
8 if (A[i] == x) return i;
9 }

10 return −1;
11 }


