
Lecture 20 Notes
C’s Memory Model

15-122: Principles of Imperative Computation (Spring 2016)
Frank Pfenning, Rob Simmons

1 The C0 and C Memory Model

When we talk about memory in C0, C1, and C, that memory is always in
one of three places:

• Local variables (including the arguments to functions) are stored in
memory. In both C0 and C, this memory is reserved automatically
when we declare a new local variable, though in C the contents of that
local memory aren’t initialized. The local memory gets reclaimed as
soon as the local variable goes out of scope.

• Allocated memory was reserved with alloc and alloc_array. We al-
ways accessed this memory by referring to its address (the address
stored in a non-NULL pointer or the address of an array). When we
reserved allocated memory in C0, this memory was initialized to de-
fault values for us. In C, xmalloc does not initialize memory.

• In C1, we said that the compiled code for functions was stored in read-
only memory, and we could get pointers into that read-only memory
by taking the address of a function: &f. Many more things in C are
stored in read-only memory, like string literals.

In this class, we think about all of this data residing in memory.1 In
this picture, memory is comprised of an enormous array of bytes, where
each index in the array of bytes is an address. The lowest address is 0,
and the highest address on most modern, 64-bit processors is 264 − 1 =
0xFFFFFFFFFFFFFFFF. This is an almost inconceivably large array of bytes,

1Later classes will complicate this picture by talking about things like registers that you
don’t need to know about in 122.

LECTURE NOTES

C’s Memory Model L20.2

far larger than the physical RAM installed in any computer, but the operat-
ing system plays tricks to allow processors to pretend like they have access
to this enormous array. One way this is done is by only giving programs
access to individual segments of this array. Modern hardware prevents in-
dividual running programs from accessing memory outside their allocated
segments. (This is a good thing: it means that, no matter how much you
mess up while programming in C, it’s going to be difficult for you to inter-
fere with other running programs like your text editor or virus scanner.)

The memory used for the local variables of a function is allocated and
de-allocated according to a stack discipline, so we call this portion of mem-
ory the stack. Memory that we explicitly allocate is reserved in what we call
the heap, though it has no relationship to the heap data structure. Read-only
memory is also called the text region. Therefore, the big picture of memory
looks like this:

0xFFFFFFFFFFFFFFFF |
| OS AREA
| ============
| System stack (local variables)
| ============
| unused
| ============
| System heap (allocated memory)
| ============
| .text (read only memory)
| ============
| OS AREA

0x0000000000000000 |

One consequence of this memory layout is that the stack grows towards
the heap, and the heap usually grows towards the stack. Programs cannot
access addresses (indices in this enormous array) that belong to the oper-
ating system. If they try, programs get an “exception” like a segmentation
fault. C0 takes great care to ensure that it never gives you any pointers to
uninitialized or random or garbage data in memory, except, of course, the
NULL pointer. NULL is a special pointer to the memory address 0, which
belongs to the operating system. The address 0 will usually not be a part
of one of the memory segments you are allowed to read from or write to,
so accessing the NULL pointer causes you to read or write outside of your
segment: a segmentation fault, or segfault.

LECTURE NOTES

C’s Memory Model L20.3

2 Arrays and Pointer Arithmetic

When compared to C0, the most shocking difference is that C does not dis-
tinguish arrays from pointers. We allocate enough space for a single integer
by writing sizeof(int), and we allocate enough space for an array of 5 in-
tegers by just multiplying the size of a single integer by 5.

int *A = xmalloc(sizeof(int) * 5);
for (size_t i = 0; i < 5; i++) A[i] = i*i*i*i;

Assuming 4-byte integers, this 5 element array is treated by C as no
more and no less than a single 20 byte memory segment that we are al-
lowed to use. If the call to malloc returned the memory address 0xCA0,
then after the for loop is done, the four bytes of memory addressed by
0xCA8 to 0xCAB will together represent the integer 16, the contents of the
third index of the array, A[2], and so on:

One consequence of this conflation of pointers and integers is that writ-
ing *A and writing A[0] necessarily means the same thing. We can also add
an integer to a pointer, but this modifies the pointer not in terms of bytes
but in terms of array elements. This allows us to get pointers into arrays!

int *x = A + 3;

*x + 5;

In the example above, then after running these two lines, the local variable
x will contain the pointer 0xCAC, and the assignment will cause both *x
and A[3] to evaluate to 86 instead of 81. This is a form of aliasing that
was impossible in C0, but it is relatively common in C. But because only
the pointer 0xCA0 in the example above was returned from xmalloc, only
that pointer should be freed: it would be a memory error to free the pointer
0xCAC stored in x.

When we allocate very large arrays, we may want them allocated with
default values, the way we did in C0. The C standard library provides a
function, calloc, to do just that, and our xalloc.h library has a non-NULL-
returning xcalloc version of calloc that you should use. With xcalloc,
we can allocate an array of seven elements, all of which are initialized to 0,
like this:

LECTURE NOTES

C’s Memory Model L20.4

int *B = xcalloc(7, sizeof(int));
for (size_t i = 1; i < 7; i++) A[i] = A[i-1]*2 + 3;

The only differences between xmalloc and xcalloc is that the latter ini-
tializes the memory to be all zeroes and takes two arguments. The xcalloc
function takes two sizes n and m and allocates n × m bytes. We think of
xmalloc as being like C0’s alloc and we think of xcalloc as being like
C0’s alloc_array, but in C you can allocate arrays and pointers with ei-
ther xmalloc or xcalloc.

3 Undefined Behavior

We have described the following as memory errors:

• Reading uninitialized memory (on the stack or on the heap).

• Dereferencing memory outside of a valid allocated segment (which
includes NULL pointer dereference, array out of bounds errors), or try-
ing to read or write to an int when you’ve only allocated enough size
for a char.

• Writing to memory that is in a read-only segment like .text.

• Using a memory allocation that has been freed, double-freeing a pointer,
or freeing any pointer that wasn’t returned from xmalloc or xcalloc.

In C0, memory errors would always predictably and consistently cause the
program to stop executing. In C, this is definitely not the case.

Array accesses are not checked at all, and out-of-bounds memory ref-
erences (whose result is formally undefined) may lead to unpredictable re-
sults. The program might stop with an error, or keep going, but after unde-
fined behavior occurs it is difficult, if not impossible, to predict a program’s
behavior. For example, the code fragment

1 int main() {
2 int* A = xmalloc(sizeof(int));
3 A[0] = 0; /* ok - A[0] is like *A */
4 A[1] = 1; /* error - not allocated */
5 A[317] = 29; /* error - not allocated */
6 A[-1] = 32; /* error - not allocated(!) */
7 printf("A[-1] = %d\n", A[-1]);
8 return 0;
9 }

LECTURE NOTES

C’s Memory Model L20.5

will not raise any compile time error or even warnings, even under the
strictest settings. Here, the call to xmalloc allocates enough space for a sin-
gle integer in memory. In this class, we are using gcc with all our standard
flags:

% gcc -Wall -Wextra -Werror -Wshadow -std=c99 -pedantic -g

The code above executes ok, and in fact prints 32, despite four blatant er-
rors in the code.

To discover whether such errors may have occurred at runtime, we can
use the valgrind tool.

% valgrind ./a.out
...
==nnnn== ERROR SUMMARY: 4 errors from 4 contexts (suppressed: 0 from 0)

which produces useful error messages (elided above) and indeed, flags er-
rors in code that didn’t appear to have any errors when we ran it without
valgrind.

You can also guard memory accesses with appropriate assert state-
ments that abort the program when attempting out-of-bounds accesses.

There’s an old joke that whenever you encounter undefined behavior,
your computer could decide to play Happy Birthday or it could catch on fire.
This is less of a joke considering recent events:

• In 2010, Alex Halderman’s team at the University of Michigan suc-
cessfully hacked into Washington D.C.’s prototype online voting sys-
tem, and caused its web page to play the University of Michigan fight
song, “The Victors.”2

• The Stuxnet worm caused centrifuges, such as those used for ura-
nium enrichment in Iran, to malfunction, physically damaging the
devices.3

Not quite playing Happy Birthday and catching on fire, but close enough.

4 Address-of

In our C0 and C memory model, almost everything has an address. If e is an
expression (like x, A[12], *x, A.fld, or A->fld) that describes a memory

2Scott Wolchok, Eric Wustrow, Dawn Isabel, and J. Alex Halderman. Attacking the Wash-
ington, D.C. Internet Voting System. Proceedings of the 16th Conference on Financial Cryp-
tography and Data Security, February 2012.

3Holger Stark. Stuxnet Virus Opens New Era of Cyber War. Spiegel Online, August 8, 2011.

LECTURE NOTES

C’s Memory Model L20.6

location which we can read from and potentially write to, then that mem-
ory location exists in memory as some number of bytes with an address.
Writing &e then gives us a pointer to that memory location. In C0, if we
have a struct containing a string and an integer, it’s not possible to get a
pointer to just the integer. This is possible in C:

1 struct wcount {
2 char *word;
3 int count;
4 };
5

6 void increment(int *p) {
7 REQUIRES(p != NULL);
8 *p = *p + 1;
9 }

10

11 void increment_count(struct wcount *wc) {
12 REQUIRES(wc != NULL);
13 increment(&(wc->count));
14 }

Because the type of wc->count is int, the expression &(wc->count) is a
pointer to an int. Calling increment_count(B) on a non-null struct will
cause the count field of the struct to be incremented by the increment
function, which is passed a pointer to the second field of the struct.

Because of the address-of operation, we never have to actually use pointer
arithmetic if we don’t want to. A + 3 is always equivalent to &A[3].

5 Stack Allocation

In C, we can also allocate data on the system stack (which is different from
the explicit stack data structure you have studied). Each function allocates
memory in its so-called stack frame for local variables. We can obtain a
pointer to this memory using the address-of operator. For example:

16 int main() {
17 int a1 = 1;
18 int a2 = 2;
19 increment(&a1);
20 increment(&a2);
21 ...

LECTURE NOTES

C’s Memory Model L20.7

22 }

Note that there is no call to xmalloc or xcalloc which allocate spaces on
the system heap (again, this is different from the heap data structure we
used for priority queues).

We can only free memory allocated with xmalloc or xcalloc, but not
memory that is on the system stack. Such memory will automatically be
freed when the function whose frame it belongs to returns. This has two
important consequences. The first is that the following is a bug, because
free will try to free the memory holding a1, which is not on the heap:

16 int main() {
17 int a1 = 1;
18 int a2 = 2;
19 free(a1);
20 ...
21 }

The second consequence is pointers to data stored on the system stack do
not survive the function’s return. For example, the following is a bug:

42 int *f_ohno() {
43 int a = 1; /* bug: a is deallocated when f_ohno() returns */
44 return &a;
45 }

A correct implementation requires us to allocate on the system heap, using
a call to malloc or calloc (or one of the library functions which calls them
in turn).

42 int *f() {
43 int* x = xmalloc(sizeof(int));
44 *x = 1;
45 return x;
46 }

When stack allocation is possible, it can be a real benefit, because it
saves you from having to remember to free memory explicitly. However, if
the data structure we allocate needs to survive past the end of the current
function you must allocate it on the heap.

LECTURE NOTES

	The C0 and C Memory Model
	Arrays and Pointer Arithmetic
	Undefined Behavior
	Address-of
	Stack Allocation

