
15-122 : Principles of Imperative Computation, Spring 2016

Written Homework D/E

Due: Monday 18th April, 2016

Name:
q1

Andrew ID:
q2

Section:
q3

This written homework covers the C0VM and graphs.

The assignment is due by 1:30pm on Monday 18th April, 2016.

This assignment can be completed in one of two ways:

(A) by printing this �le, handwriting your answers, and scanning

it, or

(B) by editing this �le and printing it to another PDF �le

You shall then submit your solution to Gradescope.

https://gradescope.com/courses/2262


15-122 Homework D/E Page 1 of 10

1. C0VM

Each of the following bytecode �les was generated by the C0 compiler. Some comments
may have been edited out, but all instructions are untouched. Write C0 programs that
will generate these bytecode �les.

(a)2pts
1 C0 C0 FF EE # magic number
2 00 0D # version 6, arch = 1 (64 bits)
3

4 00 00 # int pool count
5 # int pool
6

7 00 00 # string pool total size
8 # string pool
9

10 00 01 # function count
11 # function_pool
12

13 #<main>
14 00 00 # number of arguments = 0
15 00 02 # number of local variables = 2
16 00 26 # code length = 38 bytes
17 10 00 # bipush 0
18 36 00 # vstore 0
19 10 00 # bipush 0
20 36 01 # vstore 1
21 15 00 # vload 0
22 10 0A # bipush 10
23 A1 00 06 # if_icmplt +6
24 A7 00 14 # goto +20
25 15 00 # vload 0
26 10 01 # bipush 1
27 60 # iadd
28 36 00 # vstore 0
29 15 01 # vload 1
30 15 00 # vload 0
31 60 # iadd
32 36 01 # vstore 1
33 A7 FF E8 # goto -24
34 15 01 # vload 1
35 B0 # return
36

37 00 00 # native count
38 # native pool

c© Carnegie Mellon University 2016



15-122 Homework D/E Page 2 of 10

q4

c© Carnegie Mellon University 2016



15-122 Homework D/E Page 3 of 10

(b)2pts (Note that the bytecode continues on the following page.)

1 C0 C0 FF EE # magic number
2 00 0D # version 6, arch = 1 (64 bits)
3

4 00 00 # int pool count
5 # int pool
6

7 00 15 # string pool total size
8 # string pool
9 48 61 70 70 79 20 54 68 61 6E 6B 73 67 69 76 69 6E 67 21 0A 00

10

11 00 02 # function count
12 # function_pool
13

14 #<main>
15 00 00 # number of arguments = 0
16 00 03 # number of local variables = 3
17 00 0F # code length = 15 bytes
18 14 00 00 # aldc 0
19 B7 00 00 # invokenative 0
20 57 # pop # ignore result
21 10 00 # bipush 0
22 10 0A # bipush 10
23 B8 00 01 # invokestatic 1
24 B0 # return
25

26 #<f>
27 00 02 # number of arguments = 2
28 00 03 # number of local variables = 3
29 00 23 # code length = 35 bytes
30 15 01 # vload 1
31 10 00 # bipush 0
32 9F 00 06 # if_cmpeq +6
33 A7 00 0A # goto +10
34 15 00 # vload 0
35 36 02 # vstore 2
36 A7 00 12 # goto +18
37 15 00 # vload 0
38 15 01 # vload 1
39 60 # iadd
40 15 01 # vload 1
41 10 01 # bipush 1
42 64 # isub
43 B8 00 01 # invokestatic 1

c© Carnegie Mellon University 2016



15-122 Homework D/E Page 4 of 10

44 36 02 # vstore 2
45 15 02 # vload 2
46 B0 # return
47

48 00 01 # native count
49 # native pool
50 00 01 00 10 # print

q5

c© Carnegie Mellon University 2016



15-122 Homework D/E Page 5 of 10

(c)1pt This question has to do with the function f in the bytecode given in part (b) above.

When execution reaches the instruction on line 39 there are two values on the
operand stack; assume they are 0x0000000A and 0x00000009. (It will be helpful
to be aware of where these values came from.)

Write the four operand stack states after each of lines 39�42 is executed. The
elements in your stack should be 32-bit hexadecimal numbers. The top of your
stack should be on the right-hand side. You may not need all the provided spaces

Immediately after executing line 39: iadd

q6

,
q7

,
q8

,
q9

Immediately after executing line 40: vload 1

q10

,
q11

,
q12

,
q13

Immediately after executing line 41: bipush 1

q14

,
q15

,
q16

,
q17

Immediately after executing line 42: isub

q18

,
q19

,
q20

,
q21

c© Carnegie Mellon University 2016



15-122 Homework D/E Page 6 of 10

2. Graphs and Graph Traversals

(a)4pts Consider the graph:

Using a depth-�rst traversal, list the vertices in the order that they are visited as we
search from vertex J to vertex G. When we visit a vertex, we explore its outgoing
edges in alphabetical order. Do not list a vertex again if you backtrack to it.

Solution:
q22

List the vertices of the path found from J to G by the search.

Solution:
q23

Using a breadth-�rst traversal, list the vertices in the order that they are visited
as we search from vertex J to vertex G. When we visit a vertex, we explore its
outgoing edges in alphabetical order.

Solution:
q24

List the vertices of the path found from J to G by the search.

Solution:
q25

(b)2pts In an undirected graph with v vertices, what is the maximum possible number of

edges? (This kind of graph is called a complete graph). Express your answer in
closed form as a function of v.

Solution:
q26

A path in a graph is called a simple cycle if it lets you go from a vertex to itself
without repeating an edge or any intermediate vertex. What is the maximum
possible number of edges in a graph with v vertices that contains no simple cycles?

Solution:
q27

c© Carnegie Mellon University 2016



15-122 Homework D/E Page 7 of 10

3. Graph representation

(a)1pt Show the adjacency matrix that represents the graph drawn below (use the format

shown in the lecture notes):

q28

c© Carnegie Mellon University 2016



15-122 Homework D/E Page 8 of 10

(b)3pts Recall the adjacency list representation of a graph from class:

typedef unsigned int vertex;
typedef struct graph_header* graph;
typedef struct adjlist_node adjlist;
struct adjlist_node {

vertex vert;
adjlist *next;

};
struct graph_header {

unsigned int size;
adjlist *adj[];

};

Extend the graph interface with a function graph_countedges(G, v) that re-
turns the number of edges at vertex v of graph G. Be sure to include appropriate
REQUIRES and ENSURES contracts. You may call any functions given in the code
in class posted on our website for the lecture on representing graphs. Your solution
should be as e�cient as possible, without making any changes to the de�nition of
any data structure used in the graph representation.

unsigned int graph_countedges(graph* G, vertex v) {

q29

}

c© Carnegie Mellon University 2016



15-122 Homework D/E Page 9 of 10

(c)1pt Give the worst-case asymptotic complexity of your function for a graph of v vertices
and e edges, as a function of v and e.

Solution: O(
q30

)

(d)3pts Recall the interface to the graph library in graph.h:

typedef unsigned int vertex;
typedef struct graph_header* graph_t;

graph_t graph_new(unsigned int numvert); // New graph with numvert vertices
void graph_free(graph_t G);
unsigned int graph_size(graph_t G); // Number of vertices in the graph

bool graph_hasedge(graph_t G, vertex v, vertex w);
//@requires v < graph_size(G) && w < graph_size(G);

void graph_addedge(graph_t G, vertex v, vertex w); // Edge can’t be in graph!
//@requires v < graph_size(G) && w < graph_size(G);
//@requires v != w && !graph_hasedge(G, v, w);

Write another function to count the edges at a vertex. This must be a client
function, that is, it must use only the types and functions provided in graph.h.
You may use the fact that vertex is an integer type, and that it is the same type
returned by graph_size.

unsigned int countedges(graph_t G, vertex v) {

q31

}

c© Carnegie Mellon University 2016



15-122 Homework D/E Page 10 of 10

(e)1pt Give the worst-case asymptotic complexity of your function for a graph of v vertices
and e edges, as a function of v and e.

Solution: O(
q32

)

c© Carnegie Mellon University 2016


	[0pt][r]White1q0: 
	[0pt][r]White1q1: 
	[0pt][r]White1q2: 
	[0pt][r]White1q3: 
	[0pt][r]White1q4: 
	[0pt][r]White1q5: 
	[0pt][r]White1q6: 
	[0pt][r]White1q7: 
	[0pt][r]White1q8: 
	[0pt][r]White1q9: 
	[0pt][r]White1q10: 
	[0pt][r]White1q11: 
	[0pt][r]White1q12: 
	[0pt][r]White1q13: 
	[0pt][r]White1q14: 
	[0pt][r]White1q15: 
	[0pt][r]White1q16: 
	[0pt][r]White1q17: 
	[0pt][r]White1q18: 
	[0pt][r]White1q19: 
	[0pt][r]White1q20: 
	[0pt][r]White1q21: 
	[0pt][r]White1q22: 
	[0pt][r]White1q23: 
	[0pt][r]White1q24: 
	[0pt][r]White1q25: 
	[0pt][r]White1q26: 
	[0pt][r]White1q27: 
	[0pt][r]White1q28: 
	[0pt][r]White1q29: 
	[0pt][r]White1q30: 
	[0pt][r]White1q31: 


