15-122 : Principles of Imperative Computation, Spring 2016

Written Homework C

Due: Tuesday 12" April, 2016

Name:

Andrew ID:

Section:

This written homework will deal with some introductory C concepts.

The assignment is due by 1:30pm on Tuesday 12" April, 2016.

This assignment can be completed in one of two ways:
(A) by printing this file, handwriting your answers, and scanning
it, or
(B) by editing this file and printing it to another PDF file

You shall then submit your solution to Gradescope.

https://gradescope.com/courses/2262

15-122 Homework C Page 1 of 8

1. Pass by reference and arrays versus pointers in C

The following little program allocates and initializes an array of integers, then calls a
function to swap two of its elements. Rewrite the function main in the box below to use
array notation instead of pointer notation wherever possible.

1 #include <stdlib.h>

> #include <stdio.h>

s #include "lib/xalloc.h"

4 #include "lib/contracts.h"

5

¢ void swap(int *x, int xy) {

7 REQUIRES(x != NULL && y != NULL);
s int t = xx;

o KX = kY,

o *xy = t;
11 return;
12 }

13

14 int main() {

15 intx A = xmalloc(sizeof(int) x 10);
w6 for (int i =0 ; i < 10 ; i++) {
17 ASSERT (0 <= 1i);

15 *(A + 1) = 1i;

19 }

20 ASSERT (% (A+2) == 2);

21 ASSERT (% (A+4) == 4);

22 swap(A+2, A+4);

25 ASSERT (*x (A+2) == 4);

24 ASSERT(*(A+4) == 2);

26 printf("All tests passed.\n");
27 return 0;

(© Carnegie Mellon University 2016

15-122 Homework C Page 2 of 8

int main() {

(© Carnegie Mellon University 2016

15-122 Homework C Page 3 of 8

2. C Program Behavior

Each of the following C programs contains one or more errors. Briefly explain what
is conceptually wrong with each example. No credit will be given if you simply copy
error messages from the compiler, the runtime system, or valgrind. Of course you are
encouraged to use these tools to help you understand the problems.

1pt (@) . .

1 #include <stdio.h>

» #define DIV(X,Y) (X/Y)

3

4 int main() {

5 int c = DIV(10-1, 2+3);

6 printf("(10-1)/(2+3) is = %d\n", c);

7 return 0;

s }

Z #include <stdlib.h>
» #include "lib/xalloc.h"

4 int main() {
5 int *A = xmalloc(100);
¢ for (int 1=0; i<100; i++)

7 *(A+1) = ixi;
s free(A);

o return 0;

10}

(© Carnegie Mellon University 2016

15-122 Homework C Page 4 of 8

1pt (©) . .
1 #include <stdio.h>

> int main() {

s charx s = "1 is the loneliest number";
4« printf("s: %s\n", s);

5 *xs = '0";

6 printf("s: %s\n", s);

7 return 0;

1pt (d . .
1 #include <stdlib.h>

> #include "lib/xalloc.h"

s #include "lib/contracts.h"

4

5 int main() {

¢ 1intx A = xmalloc(sizeof(int) *x 10);
7 for (int i =1 ; i <10 ; i++) {
8 ASSERT(1 <= 1);

9 *(A + 1) = 1i;

0}

n free(A+l);

12 return 0;

(© Carnegie Mellon University 2016

15-122 Homework C Page 5 of 8

Ipt (¢) #include <stdlib.h>

> #include <stdio.h>

s #include "lib/xalloc.h"

+ #include "lib/contracts.h"

5

int main() {

7 intx A = xmalloc(sizeof(int) *x 10);
g printf("Before: %d\n", A[O]);

o for (int 1 =0 ; 1 < 10 ; i++) {

10 ASSERT (0 <= 1i);

11 A[i] = i;

[=2]

12 }
13 printf("After: %d\n", A[O]);
1u free(A);
15 return 0;
16 }
Ipt ()

. #include <stdlib.h>

> #include <stdio.h>

s #include "lib/xalloc.h"

+ #include "lib/contracts.h"

5

int main() {

r intx A = xmalloc(sizeof(int) * 10);
s intx B = A+3;

o for (int 1 =0 ; 1 < 10 ; i++) {
10 ASSERT(0 <= 1);

11 A[i] = i;

12 }

13 free(A);

14 printf("B: %d\n", x*B);

15 return 0;

[=2]

(© Carnegie Mellon University 2016

15-122 Homework C Page 6 of 8

Ipt (8) #include <stdlib.h>

> #include "lib/xalloc.h"

4 1nt main() {

5 intx A = xmalloc(sizeof(int) * 12);
s 1intx B = A;

7 for (int i =0 ; i <12 ; i++) {

8 A[i] = 1i;
o }
10 free(A);

u for (int i =1 ; i <12 ; i++) {
12 B[i] = B[i] + B[i-1];

13 }
1u free(B);
15 return 0O;
16 }

Ipt (h)

. #include <stdlib.h>

> #include <stdio.h>

s #include "lib/xalloc.h"

4

5 int main() {

s dintx A = xmalloc(sizeof(int) x 3
r for (int i =0 ; i <32 ; i++) {
8 Ali] = 1 + 4;

o}

10 intx B;

11 for (intx B = A; *B != 0; B++) {
12 printf("A[i]: %d\n“, *B);

2);

13 }

1u Tfree(B);
15 return 0;
16 }

(© Carnegie Mellon University 2016

15-122 Homework C

Page 7 of 8

3. Integer Types

(a) Suppose that we are working with the usual 2’s complement implementation of
unsigned and signed char (8 bits, one byte), short (16 bits, two bytes) and int

(32 bits, four bytes).

We begin with the following declarations:

signed char the_char = -7;

unsigned char un_char_1 = 248;

unsigned char un_char_2 = 5;

int the_int = -247;

Fill in the table below. In the third column, always use two hex digits to represent a
char, four hex digits to represent a short, and eight hex digits to represent an int.
You might find these numbers useful: 2% = 256, 216 = 65536 and 232 = 4294967296.
Most, but not all, of these answers can be derived from the lecture notes. If you
can’t find an answer from the lecture notes, you can look at online C references or

just compile some code.

C expression Decimal value | Hexadecimal
the_char -7 O0xF9
(unsigned char) the_char 249 OxF9

(int) the_char -7 OxFFFFFFF9
un_char_1 248

(int) (signed char)un_char_1

(int) (unsigned int)un_char_1

un_char_2 5 0x05

(int) (signed char)un_char_2

(int) (unsigned int)un_char_2

the_int -247

(unsigned int)the_int

(char)the_int

(short)the_int

(unsigned short)the_int

(© Carnegie Mellon University 2016

15-122 Homework C Page 8 of 8

(b) For this question, assume that char is a 1-byte signed integer type and that
unsigned int is a 4-byte unsigned integer type.

Write the C function pack_cui which takes a char array of length 4 and packs it
into a single unsigned int. We want the Oth character aligned at the most signif-
icant byte, and the last character aligned at the least significant byte. For example,
given an array C = {1, 2, -1, 4}, pack_cui(C) should return 0x0102FF04.

For full credit,
e Do not cast (or otherwise convert types) directly between signed and unsigned
types of different sizes.
e Do not rely on the endiannesﬂ of your machine. For example, the following

code is incorrect:

unsigned int pack_cui(charx C) { return x((unsigned intx) C); }

e Make sure your solution works for char arrays containing negative values.
e Write code that is clear and straightforward.

unsigned int pack_cui(char *C) {

l“Endianness” refers to the natural storage order of bytes for a particular hardware architecture; you can
read about it on Wikipedia, and don’t forget to read Gulliver’s Travels in your no doubt copious spare time.

(© Carnegie Mellon University 2016

	[0pt][r]White1q0:
	[0pt][r]White1q1:
	[0pt][r]White1q2:
	[0pt][r]White1q3:
	[0pt][r]White1q4:
	[0pt][r]White1q5:
	[0pt][r]White1q6:
	[0pt][r]White1q7:
	[0pt][r]White1q8:
	[0pt][r]White1q9:
	[0pt][r]White1q10:
	[0pt][r]White1q11:
	[0pt][r]White1q12:
	[0pt][r]White1q13:
	[0pt][r]White1q14:
	[0pt][r]White1q15:
	[0pt][r]White1q16:
	[0pt][r]White1q17:
	[0pt][r]White1q18:
	[0pt][r]White1q19:
	[0pt][r]White1q20:
	[0pt][r]White1q21:
	[0pt][r]White1q22:
	[0pt][r]White1q23:
	[0pt][r]White1q24:
	[0pt][r]White1q25:
	[0pt][r]White1q26:
	[0pt][r]White1q27:
	[0pt][r]White1q28:
	[0pt][r]White1q29:
	[0pt][r]White1q30:

