
15-122 : Principles of Imperative Computation, Spring 2016

Written Homework A/B

Due: Tuesday 5th April, 2016

Name:
q1

Andrew ID:
q2

Section:
q3

This written homework covers heaps and priority queues.

The assignment is due by 1:30pm on Tuesday 5th April, 2016.

This assignment is to be completed by editing the PDF �le,

printing it to another PDF �le,

and then submitting through Gradescope.

https://gradescope.com/courses/2262


15-122 Homework A/B Page 1 of 12

1. Heaps

As discussed in class, a min-heap is a hierarchical data structure that satis�es two in-
variants:

Order: Every child has value greater than or equal to its parent.

Shape: Each level of the min-heap is completely full except possibly the last
level, which has all of its elements stored as far left as possible. (Also known
as a complete binary tree).

Consider:

(a)1pt Describe the �nal state of the min-heap after an element with value 5 is inserted.
Satisfy the shape invariant �rst, then restore the order invariant while maintaining
the shape invariant.

In the next few questions, you can describe a tree by recursively putting parentheses
around subtrees and writing _ for empty subtrees, so that for example

5
/ \

2 7
/ \ \
1 4 9

/
3

is described as

((_ 1 _) 2 ((_ 3 _) 4 _)) 5 (_ 7 (_ 9 _)).

If you have access to a PDF editing application that allows you to draw, feel free to
use that instead. In that case, be sure all branches in your tree are drawn clearly

so we can distinguish left branches from right branches.

q4

c© Carnegie Mellon University 2016



15-122 Homework A/B Page 2 of 12

(b)1pt Starting from the original min-heap above, draw a picture of the �nal state of
the min-heap after the element with the minimum value is deleted. Satisfy the
shape invariant �rst, then restore the order invariant while maintaining the shape
invariant.

q5

(c)2pts Insert the following values into an initially empty min-heap one at a time in the
order shown. Draw the �nal state of the min-heap after each insert is completed
and the min-heap is restored back to its proper invariants. Your answer should
show 8 clearly drawn heaps.

24, 16, 49, 20, 3, 21, 54, 12

q6

c© Carnegie Mellon University 2016



15-122 Homework A/B Page 3 of 12

(d)1pt In a min-heap with n nodes, n > 0, how many nodes are leaves? Write one mathe-

matical expression (not a C0 expression; you may use bxc to round x down or dxe
to round x up) that expresses the number of leaves regardless of whether n is even
or odd.

q7

(e)1pt We are given an array A of n integers. Consider the following sorting algorithm:

• Insert every integer from A into a min-heap.

• Repeatedly delete the minimum from the heap, storing the deleted values back
into A from left to right.

What is the worst-case runtime complexity of this sorting algorithm, using Big-O
notation? Brie�y explain your answer.

Solution: O(
q8

)

q9

c© Carnegie Mellon University 2016



15-122 Homework A/B Page 4 of 12

2. Array Implementation of Heaps

(a)1pt Assume a heap is stored in an array as discussed in class. Using the min-heap
pictured below, show where each element would be stored in the array. You may
not need to use all of the array positions shown below.

Solution:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

q10 q11 q12 q13 q14 q15 q16 q17 q18 q19 q20 q21 q22 q23 q24 q25

(b)1pt Suppose we have a nonempty priority queue of n elements represented using the

array implementation of heaps. Give the exact range (inclusive), in terms of n,
of array indexes where any element of lowest priority might occur. You may use
mathematical notation or C0 notation.

q26

c© Carnegie Mellon University 2016



15-122 Homework A/B Page 5 of 12

(c)2pts Here is the heap_add function discussed in class:

void heap_add(heap* H, elem e)
//@requires is_heap(H) && !heap_full(H);
//@ensures is_heap(H);
{
int i = H->next;
H->data[H->next] = e;
(H->next)++;
/**** LOCATION 1 ****/
while(i > 1)
//@loop_invariant 1 <= i && i < H->next;
//@loop_invariant is_heap_except_up(H, i);
//@loop_invariant grandparent_check(H, i);
{
if (ok_above(H, i/2, i)) {
return;

}
swap_up(H, i);
i = i/2;

}
}

Write �OK� to the right of each assertion below, if it provably always holds at
LOCATION 1; write �NO� otherwise.

//@assert is_safe_heap(H); // Answer: q27

//@assert is_heap(H); // Answer: q28

//@assert grandparent_check(H, i); // Answer: q29

//@assert is_heap_except_up(H, i/2); // Answer: q30

//@assert is_heap_except_down(H, i); // Answer: q31

//@assert ok_above(H, i, i); // Answer: q32

c© Carnegie Mellon University 2016



15-122 Homework A/B Page 6 of 12

3. Using Priority Queues

You are working an exciting desk job as a stock market analyst. You want to be able to
determine the total price increase of the stocks that have seen the highest price increases
over the last day (of course, on a bad day, these might simply be the least negative price
changes). However, since the year is 1983, your Commodore 64 can only o�er up about
30 KB of memory.

Stock reports are delivered to you via a stream_t data type with the following interface:

// typedef _______ stream_t;
typedef struct stock_report report;
struct stock_report {
string company;
int current_price; // stock price in cents
int old_price; // previous day’s price in cents

};

// Returns true if the data stream is empty
bool stream_empty(stream_t S);
// Retrieve the next stock report from the data stream
report* get_report(stream_t S) /*@requires !stream_empty(S); @*/ ;

A stream of stock reports could be very, very large. Storing all of the reports in an array
won't cut it � you don't have enough memory (30 KB isn't even enough to store 2000
reports). You'll need a more clever solution.

Luckily, your cubicle mate Grace just �nished a stellar priority queue implementation
with the interface below. You think you should be able to use Grace's priority queue
to keep track of only the stock reports on the stocks that have increased the most,
discarding the others as necessary.

// Client Interface
// f(x,y) returns true if x is STRICTLY higher priority than y
typedef bool higher_priority_fn(void* x, void* y);

// Library Interface
// typedef ______* pq_t;
pq_t pq_new(int capacity, higher_priority_fn* priority)
/*@requires capacity > 0 && priority != NULL; @*/
/*@ensures \result != NULL; @*/ ;

bool pq_full(pq_t Q) /*@requires Q != NULL; @*/ ;
bool pq_empty(pq_t Q) /*@requires Q != NULL; @*/ ;
void pq_add(pq_t Q, void* x) /*@requires Q != NULL && !pq_full(Q); @*/

/*@requires x != NULL; @*/ ;
void* pq_rem(pq_t Q) /*@requires Q != NULL && !pq_empty(Q); @*/ ;
void* pq_peek(pq_t Q) /*@requires Q != NULL && !pq_empty(Q); @*/ ;

c© Carnegie Mellon University 2016



15-122 Homework A/B Page 7 of 12

(a)3pts Complete the functions client_priority and total_increase below. The func-
tion total_increase returns the sum of the price increases of the n stocks with
the highest price increases from the data stream S.

use <util>

bool client_priority(void* x, void* y)
//@requires x != NULL && \hastag(report*, x);
//@requires y != NULL && \hastag(report*, y);
{

return q33 ;
}

int total_increase(stream_t S, int n)
//@requires 0 < n && n < int_max();
{

pq_t Q = pq_new(q34 );

while (!stream_empty(S)) {
// Put the next stock report into the priority queue

q35 ;
// If the priority queue is at capacity, delete the
// report with the smallest price increase

if (q36 )

q37 ;
}

// Add up the price increases of everything in the
// priority queue
int total = 0;

while (q38 ) {

report* r = q39 ;

total += q40 ;
}

return total;
}

c© Carnegie Mellon University 2016



15-122 Homework A/B Page 8 of 12

(b)1pt Assuming that Grace's priority queues are based on the heap data structure, what
is the running time of total_increase(S, n) if the stream S ultimately contains
m elements? (Give an answer in big-O notation.)

q41

(c)1pt Suppose a sequence of n elements are inserted into a priority queue so that the
priority of each element inserted is strictly decreasing. Afterward, the elements are
removed one at a time based on priority. What common data structure does this
priority queue implement?

q42

If the priorities are strictly increasing instead, what common data structure does
this priority queue implement?

q43

c© Carnegie Mellon University 2016



15-122 Homework A/B Page 9 of 12

4.2pts Contracts in C

The code below is taken from the lecture notes on hash sets in C0. This is also legal
C code (assuming all the right de�nitions are available), but the contracts will not be
checked in C.

1 elem hset_lookup(hset H, elem x)
2 //@requires is_hset(H);
3 //@requires x != NULL;
4 //@ensures \result==NULL || elem_equiv(\result, x);
5 {
6 int i = elemhash(H, x);
7 for (chain* p = H->table[i]; p != NULL; p = p->next) {
8 //@assert p->data != NULL;
9 if (elem_equal(p->data, x)) return p->data;

10 }
11 return NULL;
12 }

Rewrite the function in the box on the next page as follows:

• Insert assignment statements so that all return statements have the form return result.
(In other words, use the variable result, de�ned on the next page, to hold the re-
turn value for all cases and use this variable in your postcondition.)

• Insert any necessary C contracts so that, when compiled with the �ag -DDEBUG,
contracts will be checked as they would be in C0 with the �ag -d.

Do not simplify any contracts even if it is immediately obvious from the context that
you could do so. You may omit the C0 contracts (lines beginning //@) even though in
practice we might like to keep them.

c© Carnegie Mellon University 2016



15-122 Homework A/B Page 10 of 12

elem hset_lookup(hset H, elem x) {

q44

elem result;

q45

}

c© Carnegie Mellon University 2016



15-122 Homework A/B Page 11 of 12

5.3pts Allocating and freeing memory in C

Here is a leaky C program that works with NULL-terminated linked lists. We've omitted
the code for print_list because it can't leak any memory. Contracts have been omitted
for the sake of space.

1 typedef struct list_node list;
2 struct list_node {
3 int data;
4 list* next;
5 };
6 void free_list(list* L) {
7 list* current = L;
8 while (current != NULL) {
9 list* next = current->next;

10 free(current);
11 current = next;
12 }
13 return;
14 }
15 void sum(list* L) {
16 list* sum = xmalloc(sizeof(list));
17 sum->data = 0;
18 list* current = L;
19 while (current != NULL) {
20 sum->data += current->data;
21 current = current->next;
22 }
23 L->data = sum->data;
24 L->next = NULL;
25 return;
26 }
27 int main() {
28 list* current = NULL;
29 for (int i=0 ; i<10 ; i++) {
30 ASSERT(0 <= i);
31 list* new = xmalloc(sizeof(list));
32 new->data = i;
33 new->next = current;
34 current = new;
35 }
36 printf("Initial list: "); print_list(current);
37 sum(current);
38 printf("Summed list: "); print_list(current);
39 return 0;
40 }

c© Carnegie Mellon University 2016



15-122 Homework A/B Page 12 of 12

In the table below, give the line number of each line that leaks memory. A line is
considered to leak memory if, as a result of executing it, some allocated memory has not
been freed, and no further references to that memory are possible. Returning from the
main function without deallocating everything that was allocated is considered a leak
(even though the operating system will clean it up).

Indicate how to �x the leak(s) by writing any extra code that needs to be added, with
the line numbers between which it should be inserted.

Line
number
of leak

Code that �xes it Where to
insert it

q46 q47 q48

q49 q50 q51

q52 q53 q54

q55 q56 q57

q58 q59 q60

q61 q62 q63

q64 q65 q66

q67 q68 q69

q70 q71 q72

q73 q74 q75

q76 q77 q78

q79 q80 q81

q82 q83 q84

q85 q86 q87

c© Carnegie Mellon University 2016


	[0pt][r]White1q0: 
	[0pt][r]White1q1: 
	[0pt][r]White1q2: 
	[0pt][r]White1q3: 
	[0pt][r]White1q4: 
	[0pt][r]White1q5: 
	[0pt][r]White1q6: 
	[0pt][r]White1q7: 
	[0pt][r]White1q8: 
	[0pt][r]White1q9: 
	[0pt][r]White1q10: 
	[0pt][r]White1q11: 
	[0pt][r]White1q12: 
	[0pt][r]White1q13: 
	[0pt][r]White1q14: 
	[0pt][r]White1q15: 
	[0pt][r]White1q16: 
	[0pt][r]White1q17: 
	[0pt][r]White1q18: 
	[0pt][r]White1q19: 
	[0pt][r]White1q20: 
	[0pt][r]White1q21: 
	[0pt][r]White1q22: 
	[0pt][r]White1q23: 
	[0pt][r]White1q24: 
	[0pt][r]White1q25: 
	[0pt][r]White1q26: 
	[0pt][r]White1q27: 
	[0pt][r]White1q28: 
	[0pt][r]White1q29: 
	[0pt][r]White1q30: 
	[0pt][r]White1q31: 
	[0pt][r]White1q32: 
	[0pt][r]White1q33: 
	[0pt][r]White1q34: 
	[0pt][r]White1q35: 
	[0pt][r]White1q36: 
	[0pt][r]White1q37: 
	[0pt][r]White1q38: 
	[0pt][r]White1q39: 
	[0pt][r]White1q40: 
	[0pt][r]White1q41: 
	[0pt][r]White1q42: 
	[0pt][r]White1q43: 
	[0pt][r]White1q44: 
	[0pt][r]White1q45: 
	[0pt][r]White1q46: 
	[0pt][r]White1q47: 
	[0pt][r]White1q48: 
	[0pt][r]White1q49: 
	[0pt][r]White1q50: 
	[0pt][r]White1q51: 
	[0pt][r]White1q52: 
	[0pt][r]White1q53: 
	[0pt][r]White1q54: 
	[0pt][r]White1q55: 
	[0pt][r]White1q56: 
	[0pt][r]White1q57: 
	[0pt][r]White1q58: 
	[0pt][r]White1q59: 
	[0pt][r]White1q60: 
	[0pt][r]White1q61: 
	[0pt][r]White1q62: 
	[0pt][r]White1q63: 
	[0pt][r]White1q64: 
	[0pt][r]White1q65: 
	[0pt][r]White1q66: 
	[0pt][r]White1q67: 
	[0pt][r]White1q68: 
	[0pt][r]White1q69: 
	[0pt][r]White1q70: 
	[0pt][r]White1q71: 
	[0pt][r]White1q72: 
	[0pt][r]White1q73: 
	[0pt][r]White1q74: 
	[0pt][r]White1q75: 
	[0pt][r]White1q76: 
	[0pt][r]White1q77: 
	[0pt][r]White1q78: 
	[0pt][r]White1q79: 
	[0pt][r]White1q80: 
	[0pt][r]White1q81: 
	[0pt][r]White1q82: 
	[0pt][r]White1q83: 
	[0pt][r]White1q84: 
	[0pt][r]White1q85: 
	[0pt][r]White1q86: 


