
15-122 : Principles of Imperative Computation, Spring 2016

Written Homework 9

Due: Monday 21st March, 2016

Name:
q1

Andrew ID:
q2

Section:
q3

This written homework covers binary search trees and AVL trees.

The assignment is due by 1:30pm on Monday 21st March, 2016.

This assignment is to be completed by editing the PDF �le,

printing it to another PDF �le,

and then submitting through Gradescope.

https://gradescope.com/courses/2262
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1. Binary Search Trees

(a)1pt Describe the �nal binary search tree that results from inserting the following keys
in the order given.

93, 86, 71, 115, 88, 99, 94, 77, 95, 109

You can describe it either by recursively putting parentheses around subtrees and
writing _ for empty subtrees, so that for example

5
/ \

2 7
/ \ \
1 4 9

/
3

is described as

((_ 1 _) 2 ((_ 3 _) 4 _)) 5 (_ 7 (_ 9 _)).

If you have access to a PDF editing appliction that allows you to draw, feel free to
use that instead. In that case, be sure all branches in your tree are drawn clearly

so we can distinguish left branches from right branches.

q4
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(b)2pts How many di�erent binary search trees can be constructed using the following �ve
keys if they can be inserted in any order?

35, 17, 42, -7, 90

Show how your answer is derived. We've begun the derivation below; we've used
t(n) to stand for the number of binary search trees with n elements.

Think recursively: How many trees with 0 elements can possibly exist? How many
di�erent trees with 1 element can possibly exist? 2 elements? 3 elements? 4
elements? Think about how to build up your answer from answers to simpler
questions. (It might help to come back to this question after doing the last question
on AVL tree height.)

n t(n)

0 t(0) = 1

1 t(1) = 1

2 t(2) = t(0)× t(1) + t(1)× t(0) = 2

3
q5

4
q6

5
q7
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For the following questions, you should refer to the implementation of binary search trees
discussed in class. The code is available on the course website. We'll use the version of
binary search trees where the client de�nes a single elem_compare(x,y) function that
returns -1 if x is �less than� y, 0 if x is �equal to� y, and 1 if x is �greater than� y. These
relations are de�ned based on the type of the keys in the elements.

(c)2pts Assume that the client also provides a function elem_print(e) that prints the
given element e in a readable format on one line. Complete the function bst_inorder
which prints the elements of the given BST on one line in order from smallest key
to largest key. If the BST is empty, nothing is printed. You will need a recursive
helper function tree_inorder to complete the task.

Think recursively: To print the elements rooted at some tree node T in order, �rst

print all of the elements of T's left subtree in order, then print the element of the

node T, and �nally print all of the elements of T's right subtree in order. You

should not need to examine the keys since the contract guarantees the argument is

a BST.

void tree_inorder(tree* T)
//@requires is_ordered(T, NULL, NULL);
{

q8

}

void bst_inorder(bst_t B)
//@requires is_bst(B);
{
tree_inorder(q9 );
print("\n");

}
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(d)3pts The tree_insert function in the lecture notes is recursive, but it is also possible
to implement it iteratively. Fill in the missing code.

tree* tree_insert(tree* T, elem x)
//@requires is_tree(T) && x != NULL;
//@ensures is_tree(\result);
{
tree* parent = NULL;
tree* current = q10 ;
while (current != NULL)
/*@loop_invariant current == NULL || parent == NULL

|| current == q11

|| current == q12 ;@*/
{
parent = current;
int cmp = elem_compare(x, current->data);
if (cmp == 0) {
current->data = x;
return T;

} else if (cmp < 0) {

current = q13 ;
} else {//@assert cmp > 0;

current = q14 ;
}

}
tree* R = alloc(tree);
R->data = x;
if (parent != NULL) {
int cmp = elem_compare(x, parent->data);
if (cmp < 0)

q15 ;
else

q16 ;
}
else {

q17 ;
}
return T;

}
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2. AVL Trees.

(a)3pts Describe the AVL trees that result after successively inserting the following keys
into an initially empty tree, in the order shown:

39, 77, 91, 88, 106, 80, 97

Show the tree after each insertion and subsequent re-balancing (if any) is completed:
the tree after the �rst element, 38, is inserted into an empty tree, then the tree after
76 is inserted into the �rst tree, and so on for a total of seven trees. Make it clear
what order the trees are in.

Be sure to maintain and restore the BST invariants and the additional balance
invariant required for an AVL tree after each insert.

q18
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(b) Recall our de�nition for the height h of a tree:

The height of a tree is the maximum number of nodes on a path from the

root to a leaf. So the empty tree has height 0, the tree with one node has

height 1, and a balanced tree with three nodes has height 2.

The minimum and maximum number of nodes m in a valid AVL tree is related to
its height. The goal of this question is to quantify this relationship.

i.2pts Let m(h) be the minimum number of nodes in an AVL tree of height h. Fill in

the table below relating h and m(h):

h m(h)

0 0

1 1

2 2

3
q19

4
q20

5
q21

6
q22

ii.1pt Guided by the table in part (i), give an expression for m(h).

Here's a hint: recall that the nth Fibonacci number F (n) is de�ned by:

F (0) = 0

F (1) = 1

F (n) = F (n− 1) + F (n− 2), n > 1

You may �nd it useful to use the Fibonacci function F (n) in your answer. Your
answer does not need to be a closed form expression; it could be a recursive
de�nition like the one for F (n).

q23

iii.1pt Give a closed form expression (non-recursive) for M(h), the maximum number
of nodes in a valid AVL tree of height h.

Solution: M(h) =
q24
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