
15-122 : Principles of Imperative Computation, Spring 2016

Written Homework 8

Due: Monday 14th March, 2016

Name:
q1

Andrew ID:
q2

Section:
q3

This written homework covers amortized analysis, hash tables, and generics.

The assignment is due by 1:30pm on Monday 14th March, 2016.

This assignment is to be completed by editing the PDF �le

and then submitted through Gradescope.

https://gradescope.com/courses/2262

15-122 Homework 8 Page 1 of 8

1. Amortized Analysis Revisited

Consider a special binary counter represented as k bits: bk−1bk−2 . . . b1b0. For this special
counter, the cost of �ipping the ith bit is 2i tokens. For example, b0 costs 1 token to �ip,
b1 costs 2 tokens to �ip, b2 costs 4 tokens to �ip, etc. We wish to analyze the cost of
performing n = 2k increments of this k-bit counter. (Note that k is not a constant.)

Note that if we begin with our k-bit counter containing all 0s, and we increment n times,
where n = 2k, the �nal value stored in the counter will again be 0.

(a)1pt The worst case for a single increment of the counter is when every bit is set to 1.
The increment then causes every bit to �ip, the cost of which is

1 + 2 + 22 + 23 + . . .+ 2k−1

Explain in one or two sentences why this cost is O(n). (HINT: Find a closed form
for the formula above.)

q4

(b)2pts Now, we will use amortized analysis to show that although the worst case for a

single increment is O(n), the amortized cost of a single increment is asymptotically
less than this. Remember, n = 2k.

Over the course of n increments, how many tokens in total does it cost to �ip the
ith bit the necessary number of times?

Solution:
q5

Based on your answer to the previous part, what is the total cost in tokens of
performing n increments? (In other words, what is the total cost of �ipping each
of the k bits through n increments?) Write your answer as a function of n only.
(Hint: what is k as a function of n?)

Solution:
q6

Based on your answer above, what is the amortized cost of a single increment as a
function of n only?

Solution: O(
q7

) amortized

c© Carnegie Mellon University 2016

15-122 Homework 8 Page 2 of 8

2.3pts Hash Tables: Data Structure Invariants

Refer to the C0 code below for is_hset, which checks that a given separate-chaining
hash set containing only strings is valid.

1 typedef struct chain_node chain;
2 struct chain_node {
3 string data;
4 chain* next;
5 };
6

7 typedef struct hset_header hset;
8 struct hset_header {
9 int size; // number of elements stored in hash table

10 int capacity; // maximum number of chains in hash table
11 chain*[] table;
12 };
13

14 int hashindex(hset* H, string x)
15 //@requires H != NULL && H->capacity > 0;
16 //@ensures 0 <= \result && \result < H->capacity;
17 {
18 return abs(string_hash(x) % H->capacity);
19 }
20

21 bool is_table_expected_length(chain*[] table, int length) {
22 //@assert \length(table) == length;
23 return true;
24 }
25

26 bool is_hset(hset* H) {
27 return H != NULL && H->capacity > 0 && H->size >= 0
28 && is_table_expected_length(H->table, H->capacity);
29 }

An obvious data structure invariant of our hash table is that every element of a chain
hashes to the index of that chain. Thus, this speci�cation function is incomplete: we
never test that the contents of the hash table satisfy this additional invariant. That is,
we test only on the struct hset, and not on the properties of the array within.

On the next page, extend is_hset from above, adding a helper function to check that
every element in the hash table belongs in the chain it is located in, and that each chain
is non-cyclic. You should assume we will use the following two functions for hashing
strings and for comparing them for equivalence:

int string_hash(string x);
bool string_equiv(string x, string y);

c© Carnegie Mellon University 2016

15-122 Homework 8 Page 3 of 8

Note: your answer needs only to work for hash tables containing a few hundred million
elements � do not worry about the number of elements exceeding int_max().

1 bool has_valid_chains(hset* H)
2 // Preconditions (H != NULL, H->size >= 0, ...) omitted for space
3 {
4 int nodecount = 0;
5

6 for (int i = 0; i < q8 ; i++) {
7 // set p to the first node of chain i in table, if any
8

9 chain* p = q9 ;
10

11 while (q10) {
12

13 string x = p->data;
14

15 if (q11 != i)
16

17 return false;
18

19 nodecount++;
20

21 if (nodecount > q12)
22

23 return false;
24

25 p = q13 ;
26 }
27 }
28

29 if (q14)
30

31 return false;
32

33 return true;
34 }
35

36 bool is_hset(hset H) {
37 return H != NULL && H->capacity > 0 && H->size >= 0
38 && is_table_expected_length(H->table, H->capacity)
39 && has_valid_chains(H);
40 }

c© Carnegie Mellon University 2016

15-122 Homework 8 Page 4 of 8

3. Hash Tables: Mapping Hash Values to Hash Table Indices

In our hset implementation, we require a library helper function hashindex that takes
an element, computes its hash value using the client's elem_hash function and converts
this hash value to a valid index for the hash table. The �rst two functions below try to
implement hashindex but have issues.

(a)1pt The following function has a bug in it. For one speci�c hash value h, this function
does not return an index that is valid for a hash table. Identify the speci�c hash
value.

1 int hashindex(hset H, elem x)
2 //@requires H != NULL && H->capacity > 0;
3 //@requires x != NULL;
4 //@ensures 0 <= \result && \result < H->capacity;
5 {
6 int h = elem_hash(x);
7 return abs(h) % H->capacity;
8 }

Solution: This function fails when h =
q15

(b)1pt The following function has an undesirable feature, although it always returns a valid
index. Identify the �aw and, in one sentence, explain why it's a problem.

1 int hashindex(hset H, elem x)
2 //@requires H != NULL && H->capacity > 0;
3 //@requires x != NULL;
4 //@ensures 0 <= \result && \result < H->capacity;
5 {
6 int h = elem_hash(x);
7 return h < 0 ? 0 : h % H->capacity;
8 }

q16

c© Carnegie Mellon University 2016

15-122 Homework 8 Page 5 of 8

(c)1pt Complete the following function so it avoids the problems in the previous two im-
plementations of hashindex.

int hashindex(hset H, elem x)
//@requires H != NULL && H->capacity > 0;
//@requires x != NULL;
//@ensures 0 <= \result && \result < H->capacity;
{
int h = elem_hash(x);

return (h < 0 ? q17 : h) % H->capacity;
}

c© Carnegie Mellon University 2016

15-122 Homework 8 Page 6 of 8

4. Generic Algorithms

A generic comparison function might be given a type as follows in C1:

typedef int compare_fn(void* x, void* y)
//@ensures -1 <= \result && \result <= 1;

(Note: there's no precondition that x and y are necessarily non-NULL.)

If we're given such a function, we can treat x as being less than y if the function returns
-1, treat x as being greater than y if the function returns 1, and treat the two arguments
as being equal if the function returns 0.

Given such a comparison function, we can write a function to check that an array is
sorted even though we don't know the type of its elements (as long as it is a pointer
type):

bool is_sorted(void*[] A, int lo, int hi, compare_fn* comp)
//@requires 0 <= lo && lo <= hi && hi <= \length(A) && comp != NULL;

(a)2pts Complete the generic binary search function below. You don't have access to
generic variants of lt_seg and gt_seg. Remember that, for sorted integer ar-
rays, gt_seg(x, A, 0, lo) was equivalent to lo == 0 || A[lo - 1] < x.

int binsearch_generic(void* x, void*[] A, int n, compare_fn* comp)
//@requires 0 <= n && n <= \length(A) && comp != NULL;
//@requires is_sorted(A, 0, n, comp);
{

int lo = 0;
int hi = n;

while (lo < hi)
//@loop_invariant 0 <= lo && lo <= hi && hi <= n;

//@loop_invariant lo == q18 || q19 == -1;

//@loop_invariant hi == q20 || q21 == 1;
{

int mid = lo + (hi - lo)/2;

int c = q22 ;

if (c == 0) return mid;
else if (c < 0) lo = mid + 1;
else hi = mid;

}
return -1;

}

c© Carnegie Mellon University 2016

15-122 Homework 8 Page 7 of 8

Suppose you have a generic sorting function, with the following contract:

void sort_generic(void*[] A, int lo, int hi, compare_fn* comp)
//@requires 0 <= lo && lo <= hi && hi <= \length(A) && comp != NULL;
//@ensures is_sorted(A, lo, hi, comp);

(b)2pts Write an integer comparison function compare_ints that can be used with this
generic sorting function, which you should assume is already written. You can
leave out the postcondition that the result of compare_ints is between -1 and 1
inclusive. However, the contracts on your compare_ints functionmust be su�cient
to ensure that no precondition-passing call to compare_ints can possibly cause a
memory error.

int compare_ints(void* x, void* y)

//@requires x != NULL && \hastag(q23);

//@requires y != NULL && \hastag(q24);
{

if (q25) return -1;

if (q26) return 1;
return 0;

}

c© Carnegie Mellon University 2016

15-122 Homework 8 Page 8 of 8

(c)2pts Using the above generic sorting function and compare_ints, �ll in the body of
the sort_ints function below so that it will sort the array A of integers using the
generic sort function speci�ed above. You can omit loop invariants. But of course,
when you call sort_generic, the preconditions of compare_intsmust be satis�ed
by any two elements of the array B.

void sort_ints(int[] A, int n)
//@requires \length(A) == n;
{

// Allocate a temporary generic array of the same size as A

void*[] B = q27 ;

// Store a copy of each element in A into B

q28

// Sort B using sort_generic and compare_ints from part b

q29

// Copy the sorted ints in your generic array B into array A.

q30

}

c© Carnegie Mellon University 2016

	[0pt][r]White1q0:
	[0pt][r]White1q1:
	[0pt][r]White1q2:
	[0pt][r]White1q3:
	[0pt][r]White1q4:
	[0pt][r]White1q5:
	[0pt][r]White1q6:
	[0pt][r]White1q7:
	[0pt][r]White1q8:
	[0pt][r]White1q9:
	[0pt][r]White1q10:
	[0pt][r]White1q11:
	[0pt][r]White1q12:
	[0pt][r]White1q13:
	[0pt][r]White1q14:
	[0pt][r]White1q15:
	[0pt][r]White1q16:
	[0pt][r]White1q17:
	[0pt][r]White1q18:
	[0pt][r]White1q19:
	[0pt][r]White1q20:
	[0pt][r]White1q21:
	[0pt][r]White1q22:
	[0pt][r]White1q23:
	[0pt][r]White1q24:
	[0pt][r]White1q25:
	[0pt][r]White1q26:
	[0pt][r]White1q27:
	[0pt][r]White1q28:
	[0pt][r]White1q29:

