
15-122 : Principles of Imperative Computation, Spring 2016

Written Homework 7

Due: Monday 7th March, 2016

Name:
q1

Andrew ID:
q2

Section:
q3

This written homework covers amortized analysis and hash tables.

Most of this PDF is editable. You can either type your answers in

the red boxes/lines, or you can write them neatly by hand.

Print out your submission double-sided and staple pages in order.

The assignment is due by 1:30pm on Monday 7th March, 2016.

You can hand in the assignment at the beginning of class.

You must hand in your homework yourself;

do not give it to someone else to hand in.



15-122 Homework 7 Page 1 of 16

1. Reasoning with Linked Lists

You are given the following C0 type de�nitions for a linked list of integers.

struct list_node {
int data;
struct list_node* next;

};
typedef struct list_node list;

struct list_header {
list* start;
list* end;

};
typedef struct list_header* linkedlist;

An empty list consists of one list_node. All lists have one additional node at the end
that does not contain any relevant data, as discussed in class.

In this task, we ask you to analyze a list function and reason that each pointer access is
safe. You will do this by indicating the line(s) in the code that you can use to conclude
that the access is safe. Your analysis must be precise and minimal: only list the line(s)
upon which the safety of a pointer dereference depends. If a line does not include a
pointer dereference, indicate this by writing NONE after the line in the space provided.
As an example, we show the analysis for an is_segment function below.

1 bool is_segment(list* s, list* e) {
2 if (s == NULL) return false; // NONE
3 if (e == NULL) return false; // NONE
4 if (s->next == e) return true; // 2
5 list* c = s; // NONE
6 while (c != e && c != NULL) { // NONE
7 c = c->next; // 6
8 } // NONE
9 if (c == NULL) // NONE

10 return false; // NONE
11 return true; // NONE
12 }

When we reason that a pointer dereference is safe, only that dereference is okay. So, in
the example below, we have to use line 81 to prove both line 82 and line 83 safe.

81 //@assert is_segment(a, b);
82 a->next = b;
83 list* l = a->next;

We don't allow you to say that, because line 82 didn't raise an error, a must not be NULL
and therefore 83 must be safe. (This kind of reasoning is error-prone in practice.)

c© Carnegie Mellon University 2016



15-122 Homework 7 Page 2 of 16

Here's a mystery function:

11 void mystery(linkedlist a, linkedlist b)
12 //@requires a != NULL; // NONE
13 //@requires b != NULL; // NONE
14 //@requires is_segment(a->start, a->end); // q4

15 //@requires is_segment(b->start, b->end); // q5

16 {
17 list* t1 = a->start; // q6

18 list* t2 = b->start; // q7

19 while (t1 != a->end && t2 != b->end) // q8

20 //@loop_invariant is_segment(t1, a->end); // q9

21 //@loop_invariant is_segment(t2, b->end); // q10

22 {
23 list* t = t2; // q11

24 t2 = t2->next; // q12

25 t->next = t1->next; // q13

26 t1->next = t; // q14

27 t1 = t1->next->next; // q15

28 }
29 b->start = t2; // q16

30 }

(a)1pt Explain why line 19 is safe: �rst, clearly state what the conditions for the safety of
line 19 are, and second, explain why we know those lines are safe.

q17

(b)1pt Why can we not use the combination of line 14 (which tells us that a->start is

not NULL) and line 17 (which tells us that t1 is a->start) to reason that t1 is not
NULL and therefore that line 26 is safe? Why do we actually know line 26 is safe?

q18

c© Carnegie Mellon University 2016



15-122 Homework 7 Page 3 of 16

2. Doubly-Linked Lists

Consider the following interface for stack that stores elements of the type elem:

typedef struct stack_header* stack_t;

bool stack_empty(stack_t S) /* O(1) */
/*@requires S != NULL; @*/;

stack_t stack_new() /* O(1) */
/*@ensures \result != NULL; @*/
/*@ensures stack_empty(\result); @*/;

void push(stack_t S, elem x) /* O(1) */
/*@requires S != NULL; @*/;

elem pop(stack_t S) /* O(1) */
/*@requires S != NULL; @*/
/*@requires !stack_empty(S); @*/;

Suppose we decide to implement the stack (of integers) using a doubly-linked list so that
each list node contains two pointers, one to the next node in the list and one to the
previous (prev) node in the list:

typedef struct list_node list;
struct list_node {

elem data;
list* prev;
list* next;

};

typedef struct stack_header stack;
struct stack_header {

list* top;
list* bottom; // points to dummy node

};

The top element of the stack will be stored in the �rst (head) node of the list, and the
bottom element of the stack will be stored in the second-to-last node in the list, with
the last node being a �dummy node�.

c© Carnegie Mellon University 2016



15-122 Homework 7 Page 4 of 16

An empty stack consists of a dummy node only: the prev, data, and next �elds of that
dummy are all unspeci�ed. A non-empty stack has an unspeci�ed prev �eld for the top,
and an unspeci�ed data and next �eld for the bottom.

(a)2pts Modify the singly-linked list implementation of stacks given below to work with the
doubly-linked list representation given above. For each function, either state the
modi�cation(s) that need to be made (e.g. �Insert the statement XXXX after line
Y�, �Remove line Z�, �Change line Z to XXXX�, etc.) or state �No change needs to
be made�. You may assume there is an appropriate is_stack speci�cation function
already de�ned. Be sure that your modi�cations still maintain the O(1) requirement
for the stack operations.

1 stack* stack_new()
2 //@ensures is_stack(\result);
3 //@ensures stack_empty(\result);
4 {
5 stack* S = alloc(struct stack_header);
6 list* L = alloc(struct list_node);
7 S->top = L;
8 S->bottom = L;
9 return S;

10 }

q19

11 bool stack_empty(stack* S)
12 //@requires is_stack(S);
13 {
14 return S->top == S->bottom;
15 k}

q20

c© Carnegie Mellon University 2016



15-122 Homework 7 Page 5 of 16

16 void push(stack* S, elem x)
17 //@requires is_stack(S);
18 //@ensures is_stack(S);
19 {
20 list* L = alloc(struct list_node);
21 L->data = x;
22 L->next = S->top;
23 S->top = L;
24 }

q21

25 elem pop(stack* S)
26 //@requires is_stack(S);
27 //@requires !stack_empty(S);
28 //@ensures is_stack(S);
29 {
30 elem e = S->top->data;
31 S->top = S->top->next;
32 return e;
33 }

q22

c© Carnegie Mellon University 2016



15-122 Homework 7 Page 6 of 16

(b)1pt We wish to add a new operation stack_bottom to our stack implementation from
the previous part.

elem stack_bottom(stack_t S) /* O(1) */
/*@requires S != NULL && !stack_empty(S); @*/ ;

This operation returns (but does not remove) the bottom element of the stack. Write
an implementation for this function using the doubly-linked list implementation of
stacks from the previous part. Be sure that your function runs in constant time.
(Remember that the linked list that represents the stack has a dummy node.)

elem stack_bottom(stack* S)
//@requires is_stack(S);
//@requires !stack_empty(S);
{

q23

}

c© Carnegie Mellon University 2016



15-122 Homework 7 Page 7 of 16

(c)1pt Now, consider the following broken implementation of is_stack for this stack
implementation.

bool is_segment(list* node1, list* node2) {
if (node1 == NULL) return false;
if (node1 == node2) return true;
return is_segment(node1->next, node2);

}

bool is_stack(stack* S) {
return S != NULL && is_segment(S->top, S->bottom);

}

Draw a complete picture of a stack data structure (with integer elements) that con-
tains at least 4 allocated list_node structs and that returns true from is_stack
yet would not be well-formed. Give speci�c values everywhere. Don't use Xs
anywhere; they are for unspeci�ed values. So your diagram should depict pointers
(possibly NULL) and integers. For full credit your example struct must fail the unit
test below with a segfault or an assertion failure after passing the initial assertion.

Stack picture:

// Unit test that your example above should fail
int main() {

stack* S = // code that constructs the example above
// by necessity, this won’t respect the interface

assert(is_stack(S) && !stack_empty(S)); // This must pass
elem x = stack_bottom(S);
elem y = pop(S);
while (!stack_empty(S)) {

y = pop(S);
assert(is_stack(S));

}
assert(x == y);
return 0;

}

c© Carnegie Mellon University 2016



15-122 Homework 7 Page 8 of 16

3. Remove Operation For Unbounded Arrays

The arr_add operation adds an element to the end of an unbounded array. Conversely,
the arr_rem operation removes the element at the end. (Remember that the �end� of
the array is from the client's perspective. There are additional unused positions in the
array from the implementation's perspective.) When removing, we don't need to resize
the array to a smaller size, but we could. However, we need to consider when to shrink
the array in order to guarantee O(1) amortized runtime.

(a)1pt If the array resizes to be twice as large as soon as it is full (as in lecture), and
resizes to be half as large as soon as it is strictly less than half full, give a sequence
of additions and removals, starting from a new array A of size 3 (limit 6), that
will cause worst-case behavior. End your solution end with �. . . � after you clearly
establish the repeating behavior, and after each operation write the size, limit, and
number of array writes for that operation. The �rst line of the answer is shown.

// size = 3, limit = 6
arr_add(A, "x"); // size = 4, limit = 6, 1 array write

q24

(b)1pt Generalizing, with the strategy above, what is the worst case runtime complexity,
using big-O notation, of performing k operations on an array of size n, where each
operation is taken from the set {arr_add, arr_rem} ?

O(
q25

)

We haven't done the type of amortized analysis for this strategy that you saw in
lecture (accounting for operations with tokens). However, we can say that the
amortized cost of each operation is found by dividing the total cost by the number
of operations. (This is known as �aggregate� analysis.)

Using aggregate analysis, what is the amortized cost of each of the k operations in
the worst case?

O(
q26

)

c© Carnegie Mellon University 2016



15-122 Homework 7 Page 9 of 16

(c)1pt Instead of resizing the array to be half as large as soon as it is strictly less than half
full, we could resize the array to half of its current size when it is exactly a quarter
full. This will lead to O(1) amortized cost per remove operation. Using an array
of size 11 (limit 12), show the e�ect of an add operation followed by the sequence
of remove operations that causes the array to resize. As before, show the size and
limit of the array after each operation, and indicate how many array writes each
step takes. The �rst two lines are given for you.

// size = 11, limit = 12
arr_add(A, "x"); // size = 12, limit = 24, 13 array writes
arr_rem(A); // size = 11, limit = 24, 0 array writes

q27

In the answer above, the initial arr_add operation doubled the size of the array,
consuming any banked tokens. Based on your answer above, what is the minimum
number of tokens that should be changed for each arr_rem operation so that enough
tokens are banked for the resize of the array? In your analysis, the only thing we
have to pay for with tokens is array writes.

q28

token(s).

c© Carnegie Mellon University 2016



15-122 Homework 7 Page 10 of 16

4. A New Implementation of Queues

Recall the interface for a stack that stores elements of the type elem:

typedef ______* stack_t;

bool stack_empty(stack_t S) /* O(1) */
/*@requires S != NULL; @*/;

stack_t stack_new() /* O(1) */
/*@ensures \result != NULL; @*/
/*@ensures stack_empty(\result); @*/;

void push(stack_t S, elem x) /* O(1) */
/*@requires S != NULL; @*/;

elem pop(stack_t S) /* O(1) */
/*@requires S != NULL; @*/
/*@requires !stack_empty(S); @*/;

For this question you will analyze a di�erent implementation of the queue interface. In-
stead of a linked list, this implementation uses two stacks, called instack and outstack.
To enqueue an element, we push it on top of the instack. To dequeue an element, we
pop the top o� of the outstack. If the outstack is empty when we try to dequeue,
then we will �rst move all of the elements from the instack to the outstack, then pop
the outstack.

For example, below is one possible con�guration of a two-stack queue containing the
elements A through E (A is at the front and E is at the back of the abstract queue):

We will use the following C0 code:

typedef struct stackqueue_header stackqueue;
struct stackqueue_header {
stack_t instack;
stack_t outstack;

};

c© Carnegie Mellon University 2016



15-122 Homework 7 Page 11 of 16

bool is_stackqueue(stackqueue* Q)
{
return Q != NULL && Q->instack != NULL && Q->outstack != NULL;

}

stackqueue* queue_new()
//@ensures is_stackqueue(\result);
{
stackqueue* Q = alloc(stackqueue);
Q->instack = stack_new();
Q->outstack = stack_new();
return Q;

}

(a)1pt Given a queue with k elements in it, exactly how many di�erent ways can this queue
be represented using two stacks, as a function of k?

q29

way(s).

(b)3pts Write the function queue_empty that returns true if the queue is empty. Your
answer must be based on the description of the data structure above.

bool queue_empty(stackqueue* Q)
//@requires is_stackqueue(Q);
//@ensures is_stackqueue(Q);
{

q30

}

c© Carnegie Mellon University 2016



15-122 Homework 7 Page 12 of 16

Write the function enq based on the description of the data structure above.

void enq(stackqueue* Q, elem x)
//@requires is_stackqueue(Q);
//@ensures is_stackqueue(Q);
{

q31

}

Write the function deq based on the description of the data structure above.

elem deq(stackqueue* Q)
//@requires is_stackqueue(Q);
//@requires !queue_empty(Q);
//@ensures is_stackqueue(Q);
{

q32

}

c© Carnegie Mellon University 2016



15-122 Homework 7 Page 13 of 16

(c)1pt We now determine the runtime complexity of the enq and deq operations. Let k
be the total number of elements in the queue.

What is the worst-case runtime complexity of each of the following queue operations
based on the description of the data structure implementation given above? Write
ONE sentence that explains each answer.

enq: O(
q33

)

deq: O(
q34

)

(d)1pt Using amortized analysis, we can show that the worst-case complexity of a valid

sequence of n queue operations is O(n). This means that the amortized cost per
operation is O(1), even though a single operation might require more than constant
time.

In this case, a valid sequence of queue operations must start with the empty queue.
Each operation must be either an enqueue or a dequeue. Assume that push and
pop each consume one token.

How many tokens are required to enqueue an element? State for what purpose

each token is used. Your answer should be a constant integer � the amortized
cost should be O(1).

q35

How many tokens are required to dequeue an element? Once again, you must state
for what purpose each token is used. Your answer should be a constant integer
� the amortized cost should be O(1).

q36

c© Carnegie Mellon University 2016



15-122 Homework 7 Page 14 of 16

5. Hash Tables: Dealing with Collisions

In a hash table, when two keys hash to the same location, we have a collision. There
are multiple strategies for handling collisions:

• Separate chaining: each location in the table stores a chain (typically a linked
list) of all keys that hashed to that location.

• Open addressing: each location in the table stores a key directly. In case of
a collision when inserting, we probe the table to search for an available storage
location. Similarly, in case of a collision when looking up a key k, we probe to
search for k. Suppose our hash function is h, the size of the table is m, and we are
attempting to insert or look up the key k:

� Linear probing : on the ith attempt (counting from 0), we look at index (h(k)+i)
mod m.

� Quadratic probing : on the ith attempt (counting from 0), we look at index
(h(k) + i2) mod m.

For insertion, we are searching for an empty slot to put the key in. For lookup, we
are trying to �nd the key itself.

(a)1pt You are given a hash table of size m with n inserted keys that resolves collisions
using separate chaining. If n = 2m and the keys are not evenly distributed, what
is the worst-case runtime complexity of searching for a speci�c key using big O
notation?

O(
q37

)

Under the same conditions, except that now the keys are evenly distributed, what
is the worst-case runtime complexity of searching for a speci�c key using big O
notation?

O(
q38

)

As usual, for both of the answers above, give the tightest, simplest bound.

c© Carnegie Mellon University 2016



15-122 Homework 7 Page 15 of 16

For the next three questions, you are given a hash table of capacity m = 13. The hash
function is h(k) = k; after hashing we attempt to insert the key k at array index h(k)
mod m.

(b)1pt Assume the table resolves collisions using separate chaining and show how the set
of keys below will be stored in the hash table by drawing the �nal state of each
chain of the table after all of the keys are inserted, one by one, in the order shown.

67, 23, 54, 88, 39, 75, 49, 5

Wherever they occur, you should indicate NULL pointers explicitly by the notation

from class: .

c© Carnegie Mellon University 2016



15-122 Homework 7 Page 16 of 16

(c)1pt Show where the sequence of keys shown below are stored in the same hash table
if they are inserted one by one, in the order shown, using linear probing to resolve
collisions.

67, 23, 54, 88, 39, 75, 49, 5

(d)1pt Show where the sequence of keys shown below are stored in the same hash table if
they are inserted one by one, in the order shown, using quadratic probing to resolve
collisions.

67, 23, 54, 88, 39, 75, 49, 5

(e)1pt Quadratic probing su�ers from one problem that linear probing does not. In partic-
ular, given a non-full hashtable, insertions with linear probing will always succeed,
while insertions with quadratic probing might not (i.e. they may never �nd an open
spot to insert).

Using h(k) = k as your hash function and m = 7 as your table capacity, give an
example of a table with load factor below 2/3 and a key that cannot be successfully
inserted into the table. (Hint: start entering di�erent multiples of 7.)

Key that cannot successfully be inserted:
q39

c© Carnegie Mellon University 2016


	[0pt][r]White1q0: 
	[0pt][r]White1q1: 
	[0pt][r]White1q2: 
	[0pt][r]White1q3: 
	[0pt][r]White1q4: 
	[0pt][r]White1q5: 
	[0pt][r]White1q6: 
	[0pt][r]White1q7: 
	[0pt][r]White1q8: 
	[0pt][r]White1q9: 
	[0pt][r]White1q10: 
	[0pt][r]White1q11: 
	[0pt][r]White1q12: 
	[0pt][r]White1q13: 
	[0pt][r]White1q14: 
	[0pt][r]White1q15: 
	[0pt][r]White1q16: 
	[0pt][r]White1q17: 
	[0pt][r]White1q18: 
	[0pt][r]White1q19: 
	[0pt][r]White1q20: 
	[0pt][r]White1q21: 
	[0pt][r]White1q22: 
	[0pt][r]White1q23: 
	[0pt][r]White1q24: 
	[0pt][r]White1q25: 
	[0pt][r]White1q26: 
	[0pt][r]White1q27: 
	[0pt][r]White1q28: 
	[0pt][r]White1q29: 
	[0pt][r]White1q30: 
	[0pt][r]White1q31: 
	[0pt][r]White1q32: 
	[0pt][r]White1q33: 
	[0pt][r]White1q34: 
	[0pt][r]White1q35: 
	[0pt][r]White1q36: 
	[0pt][r]White1q37: 
	[0pt][r]White1q38: 


