
15-122 : Principles of Imperative Computation, Spring 2016

Written Homework 3

Due: Monday 1st February, 2016

Name:

Andrew ID:

Section:

This written homework covers specifying and implementing search in an array and how to
reason with contracts. You will use some of the functions from the arrayutil.c0 library that
was discussed in lecture in this assignment.

Print out this PDF double-sided, staple pages in order,

and write your answers neatly by hand in the spaces provided.

The assignment is due by 1:30pm on Monday 1st February, 2016.

You can hand in the assignment at the beginning of class.

You must hand in your homework yourself;

do not give it to someone else to hand in.

15-122 Homework 3 Page 1 of 7

1. Debugging preconditions and postconditions

Here is an initial, buggy speci�cation of search for the �rst occurrence of x in an array.
You should assume the search function does not modify the contents of the array A in
any way.

1 int search(int x, int[] A, int n)
2 //@requires 0 <= n && n <= \length(A);
3 // (nothing to see here)
4 /*@ensures (\result == -1 && !is_in(x, A, 0, n))
5 || (0 <= \result && \result < n
6 && A[\result] == x
7 && A[\result-1] < x); @*/

(a)1pt Give values of A and \result below, such that the precondition evaluates to true
and checking the postcondition will cause an array-out-of-bounds exception.

• x = 122

• A =

0	
 1	
 2	
 3	
 4	

• n = 5

• \result =

(b)1pt Notice that the postcondition seems to be relying on A being sorted, although the
precondition does not specify this. It might be possible, then, that unsorted input
will reveal additional bugs in our initial speci�cation.

Give values for A and \result below, such that \result != -1, the precondition
and the postcondition both evaluate to true, and \result is not the index of the
�rst occurrence of x in the array.

• x = 122

• A =

0	
 1	
 2	
 3	
 4	

• n = 5

• \result =

15-122 Homework 3 Page 2 of 7

(c)1pt Give values for A and \result below, such that the precondition evaluates to true,
the postcondition evaluates to false, and \result is the index of the �rst occurrence
of x in the array.

• x = 122

• A =

0	
 1	
 2	
 3	
 4	

• n = 5

• \result =

(d)1pt Edit line 7 slightly so that, if we added an additional precondition

3 //@requires is_sorted(A, 0, n);

the postcondition for search would be safe and it would correctly enforce that
A[\result] is the �rst occurrence of x in A. Do not use any of the arrayutil.c0
speci�cation functions.

The addition you make to the postcondition should run in constant time (O(1)).
(We don't usually care about the complexity of our contracts, of course, but this
limits what kinds of answers you can give. In the future, unless we speci�cally say
otherwise, you can assume that the e�ciency of contracts doesn't matter.)

7

(e)1pt Edit line 7 so that whether or not we require that the array is sorted, the postcon-
dition for search is safe and correct. Make the answer as simple as possible. You'll
need to use one of the arrayutil.c0 speci�cation functions.

7

15-122 Homework 3 Page 3 of 7

2. The Loop Invariant

Now we will consider a buggy implementation with a correct speci�cation.

1 int search(int x, int[] A, int n)
2 //@requires 0 <= n && n <= \length(A);
3 //@requires is_sorted(A, 0, n);
4 /*@ensures (\result == -1 && !is_in(x, A, 0, n))
5 || (0 <= \result && \result < n
6 && A[\result] == x
7 /* YOUR ANSWER FOR 1(d) */); @*/
8 {
9 int lower = 0;

10 int upper = n;
11 while (lower < upper)
12 //@loop_invariant 0 <= lower && lower <= upper && upper <= n;
13 //@loop_invariant gt_seg(x, A, 0, lower);
14 //@loop_invariant le_seg(x, A, upper, n);
15 {

...

22 }
23 //@assert lower == upper;
24 return -1;
25 }

You should assume that the missing loop body does not write to the array A or modify
the locals x, A, or n, but that it might modify lower or upper.

(a)1pt In one sentence, explain why gt_seg(x, A, 0, 0) and le_seg(x, A, n, n)
are always true, assuming 0 <= n && n <= \length(A). Your answer should
involve the size of the array segment being tested.

15-122 Homework 3 Page 4 of 7

(b)1pt Prove that the loop invariants (lines 12�14) hold initially.

0 <= lower is true because of line(s):

lower <= upper is true because of line(s):

upper <= n is true because of line(s):

gt_seg(x, A, 0, lower) is true because of line(s):

le_seg(x, A, upper, n) is true because of line(s):

Take for granted that all the loop invariants are known to be safe. You do need
line n <= \length(A) from line 2 to reason that the last loop invariant involving
le_seg is safe (that it satis�es its preconditions). You don't need to include line 2
in your proof that le_seg(x,A,upper,n) always evaluates to true.

(c)1pt Danger! These loop invariants do not imply the postcondition when the function
exits on line 24. Give speci�c values for A, lower, and upper such the precondition
evaluates to true, the loop guard evaluates to false, the loop invariants evaluate to
true, and the postcondition evaluates to false, given that \result == -1.

• x = 122

• A =

0	
 1	
 2	
 3	
 4	

• n = 5

• \result =

• lower =

• upper =

15-122 Homework 3 Page 5 of 7

(d)2pts Modify the code after the loop so that, if the loop terminates, the postcondition
will always be true. The conditional and the return statement should both run in
constant time (O(1)) and should not use arrayutil.c0 speci�cation functions.

Take care to ensure that any array access you make is safe! You know that the
loop invariants on lines 12�14 are true, and you know that the loop guard is false
(which, together with the �rst loop invariant on line 12, justi�es the assertion
lower == upper).

22 /* Loop ends here... */
23 //@assert lower == upper;

25 if (__)

27 return ___;

29 return -1; // old line 24
30 } // old line 25

3. Code Revisions

Here is a loop body that performs linear search. You can use it as an implementation
for lines 15�22 on page 3:

15 {
16 if (A[lower] == x)
17 return lower;
18 if (A[lower] > x)
19 return -1;
20 //@assert A[lower] < x;
21 lower = lower + 1;
22 }

(a)1pt For the loop invariants to hold for this loop body, they must be preserved through
each iteration.

Prove that the invariant in line 12 on page 3 is preserved by this loop body.

15-122 Homework 3 Page 6 of 7

(b)1pt Prove that the invariant in line 13 is preserved by this loop body. (The proof for

line 14 is not required for this answer.)

(c)1pt You might have noticed in the previous part that upper does not actually change
during the loop, even though all our reasoning assumes it might. So now, complete
this simpler loop invariant for the modi�ed code by writing a line that tells you
something about upper. The resulting loop invariant should be simple, should be
true initially, should be preserved by any iteration of the loop, and should allow
you to prove the postcondition without the modi�cations you made in 2(d). (You
don't have to write the proof.)

12 //@loop_invariant 0 <= lower && lower <= upper;

13 //@loop_invariant lower == 0 || x > A[lower - 1];

14 //@loop_invariant ________________________________;

4.2pts Timing code

In this class we're mostly interested in the big-O behavior of a function, but in the right
circumstances it would be possible to come up with a speci�c function describing the
amount of time (say, in milliseconds) that it takes to run a given function.

For this question, consider a C0 function mystery with three integer arguments x, y,
and z and with a running time in milliseconds that is precisely speci�ed by T(x, y, z) =
c × x2 × y × 2z for some positive constant c. (We don't know or care what mystery is
actually computing for the purpose of this question.)

15-122 Homework 3 Page 7 of 7

Say, for some values of x and y and z, the function mystery takes 1 second to run.

Leaving y and z the same, how would we change the �rst input (in terms of x) to make
the function run for 16 seconds?

T (, y, z) = 16 seconds

Leaving x and z the same, how would we change the second input (in terms of y) to
make the function run for 16 seconds?

T (x, , z) = 16 seconds

Leaving x and y the same, how would we change the third input (in terms of z) to make
the function run for 16 seconds?

T (x, y,) = 16 seconds

These kinds of calculations allow us to experimentally investigate the Big-O complexity
of a function by modifying the size of the input (say, doubling it) and seeing how the
running time changes. But one must be careful! If there was an extra two-second
constant cost, so that the running time of the mystery function was actually T(x, y, z) =
c×x2×y×2z+2000, then mystery would have the same big-O behavior, but investigating
the big-O running time by doubling the �rst argument from x to 2x in the example above
could lead us astray!

Why? What additional test(s) might save us from this mistake?

