15-122 : Principles of Imperative Computation, Spring 2016

Written Homework 2

Due: Monday 25™" January, 2016

Name:

Andrew ID:

Section:

This written homework covers more reasoning using loop invariants and assertions, and the
CO0 types int and bool as well as arrays.

Print out this PDF double-sided, staple pages in order,
and write your answers neatly by hand in the spaces provided.

The assignment is due by 1:30pm on Monday 25" January, 2016.
You can hand in the assignment at the beginning of class.

You must hand in your homework yourself;
do not give it to someone else to hand in.



15-122 Homework 2 Page 1 of 15

1. Safety in CO

We'll talk a lot in this class about proving that contracts (preconditions, postconditions,
assertions, and loop invariants) will always evaluate to true. This is important, because
it’s how we prove a function correct.

Before we can even talk about correctness, though, we want to use our contracts to think
about safety. There are five kinds of safety violations that we’ve talked about so far in
class:

e Giving a function call arguments that violate its preconditions;

e Division or modulo by zero;

e Bitshifting an integer left or right by less than zero or more than 31;
e Allocating an array with negative length; and

e Accessing an array out of bounds.

Whenever we have an operation that’s potentially unsafe, we must be able to point to
contracts that ensure its safety without reasoning about multiple iterations of any loop
at once. That means we may use the following facts:

e When locals are untouched by a loop, statements we know to be true about those
locals before the loop remain valid inside the loop and after the loop.

e For locals that are modified by the loop, the loop guard and the loop invariants are
the only statements we can use. Inside of a loop, we know that the loop invariants
held just before the loop guard was checked and that the loop guard returned true.

o After a loop, we know that the loop invariants held just before the loop guard was
checked for the last time and that the loop guard returned false.

For each of the problems below, state whether the safety of each potentially unsafe
operation is SUPPORTED or UNSUPPORTED given the existing contracts,
and briefly explain your reasoning. You can assume that any loop invariants are
true initially (before the loop guard is checked the first time) and that they are preserved
by any iteration of the loop. If you claim that the assertion is supported, your answer
should be a concise proof; if you claim that the assertion is unsupported, we only expect
an informal argument to explain why.

We’ve given two examples below.



15-122 Homework 2

Page 2 of 15

(a)

 void fill(int x, int[] A)

/*@requires x == \length(A); @*/;

4+ int[] f(int x, int[] B)
5 //@requires 1 <= x && x < \length(B);

o {

10
11
12
13
14
15
16
17

18

int i

=1;
int[] A =

alloc_array(int, x);

while (i < x)
//@loop_invariant i >= 1;

{
B[i] = B[i] - 3;
i+=1;

}

fill(i, A);

return A;

Safety of the array access on line 13 is: SUPPORTED.
To show: 0 <= 1 & 1 < \length(B)

- i>=1 (line 11)

- 0 <=1 (because 1 >= 1)

- 1<x (line 10)

- x < \length(B) (line 5)

— 1 < \length(B) (because i < x and x < \length(B))

Safety of the function call on line 17 is: UNSUPPORTED.

We know by line 8 that \length(A) == X, so for safety of the function call we

need to know 1 == Xx.

By line 10, we know that the loop guard i < x is false — that is, we know that
I'(i < x), which is the same thing as saying i >= x. We can’t conclude, from

this, that i is equal to x.

With a different loop invariant on line 11, safety of the function call on line 17
would have been supported. You'll demonstrate this in the next question.

That means that, even though we have a function call whose precondition will
never fail, our loop invariants aren’t good enough for us conclude (using only logical
reasoning based on existing contracts) that that function call is safe!




15-122 Homework 2 Page 3 of 15

(b) This is the exact same code from the previous example, but because there is a
different loop invariant, the answers, which are given, have changed. You just have
to provide explanations.

 void fill(int x, int[] A)
: /*@requires x == \length(A); @x/;

 int[] f(int x, int[] B)
s //@requires 1 <= x && x < \length(B);

o {
7 int 1 = 1;
8 int[] A = alloc_array(int, x);

10 while (i < x)
11 //@loop_invariant i <= \length(A);

12 {

13 B[i] = B[i] - 3;
14 i+= 1;

15 }

16

17 fill(i, A);

18 return A;

19 }

Safety of the array access on line 13 is: UNSUPPORTED.

Safety of the function call on line 17 is: SUPPORTED.




15-122 Homework 2 Page 4 of 15

©

1 int gap(int x, int y)
: /*@requires x <= vy; @/ ;

. int g(int a)
s //@requires 0 <= a;

s {

7 int i = 2xa;

9 while (i > a)

10 //@loop_invariant i >= a;

11 {

12 int[] A = alloc_array(int, i-1);
13 a += 2;

14 i+=1;

15 }

16

17 return gap(i, a);

18 }

Safety of the array allocation on line 12 is:

Safety of the function call on line 17 is:




15-122 Homework 2 Page 5 of 15

@

1 int h(int n) {

2 int x = 1;

3 while (n >= 25) {
4 X += 1;

5 if (n %2 ==1) {
6 n=3xn + 1;
7 } else {

8 n=n/2;

0 }

10 }

12 if (n >= 0) {

13 return x << n;
14 }

15
16 return 1000000 / x;
17 }

Safety of the left-shift on line 13 is:

Safety of the division on line 16 is:




15-122 Homework 2 Page 6 of 15

2. Basics of C0: the int and bool data types
(a) Let p be an int in the CO language. Express the following operations in CO using

N

only constants in hezadecimal and only the bitwise operators (& |, 7, ~, <<, >>).
Your answers should account for the fact that CO uses 32-bit integers.

Each answer should consist of ONE line of C0O. You can use multiple
constants and multiple bitwise operations, but no loops and no additional
assignment statements.

i. Set x equal to p with its lowest 8 bits cleared to 0 and with its middle 8 bits
set to 1 (so that @xAB12CD34 becomes OxXAB1FFD0O).

int x =

ii. Sety equal to p with its highest and lowest 16 bits swapped (so that @©x1234ABCD
becomes OxABCD1234)

int y =

iii. Set z equal to p with its middle 16 bits flipped (0 = 1 and 1 => 0) (so that
O0xABOF1812 becomes OXABFOE712).

int z =

The function safe_add is intended to check that the result of adding the three
numbers a, b, and ¢ has the same result in normal integer arithmetic and in 32-bit
two’s complement signed modular arithmetic.

Does the following code satisfy this specification? If so, state why in one sentence.
If not, give 32-bit values for a, b and c¢ in hexadecimal such that the check will
return an incorrect result:

1 bool safe_add(int a, int b, int c) {

> if (a>0&& b >08&& c>0&% a + b + c <0) return false;
s if (<0 & b <0 && c <0 && a+ b+ c>0) return false;
1+ return true;

s }




15-122 Homework 2 Page 7 of 15

(b) For each of the following statements, determine whether the statement is true or
false in CO. If it is true, explain why in one sentence. If it is false, give a counterex-
ample to illustrate why the statement is false.

For every int x, vy: if x <y, thenx + 1 <=y.
For every int x: X >> 11is equivalent to x / 2.
For every int x, y, z: (X +y) * zisequivalenttoz * y + X * z.

For every int x, vy: X < yis equivalent to x - y < 0.




15-122 Homework 2 Page 8 of 15

3

10
11
12
13
14
15
16
17
18
19
20

21

23

Proving functions with one loop correct

The Fibonacci sequence is shown below:
0,1,1,2,3,5,8,13,21, 34,55,89, 144,233,377, ...

Each integer 7,,, n > 2, in the sequence is the sum of 7,,_; and 4,,_5. By definition, 7o = 0
and i; = 1.

Consider the following implementation for fast_fib that returns the n'"™ Fibonacci
number. The body of the loop is not shown.

int FIB(int n)
//@requires n >= 0;
{
if (n <= 1) return n;
else return FIB(n-1) + FIB(n-2);
}

int fast_fib(int n)
//@requires n >= 0;
//@ensures \result == FIB(n);
{
if (n <= 1) return n;
int a =
int b =
int ¢ =
int x =

.
’
.
’

’

N = P2 O

.
’

while (x < n)
//@loop_invariant 2 <= x && X <= n;
//@loop_invariant a == FIB(x-2);
//@loop_invariant b == FIB(x-1);
//@loop_invariant c == a + b;
{

// LOOP BODY NOT SHOWN: modifies a, b, c, and x

}

return c;

}

In this problem, we will reason about the correctness of the fast_fib function when
the argument n is greater than or equal to 3, and we will complete the implementation
based on this reasoning.

(NOTE: To completely reason about the correctness of fast_fib, we also need to
point out that fast fib(0) == FIB(0) and that fast_fib(1l) == FIB(1). This
is straightforward, because no loops are involved.)



15-122 Homework 2

Page 9 of 15

Note: The completed solution below shows you a general format for showing that a

postcondition holds given a valid loop invariant.

The English explanation is kept to a

minimum and logical/mathematical reasoning plays a large role. In the future, you may
be asked to write an entire solution in a clear, concise manner, and this solution gives
you an example of how you might write such a solution.

(a) Loop invariant and negation of the loop guard imply postcondition
Complete the argument that the postcondition is satisfied assuming valid loop in-
variant(s) by giving appropriate line numbers. Use logical reasoning.

implies that x ==

after the loop.

c==a+b

== a + FIB(x-1)

== FIB(Xx)

We know x <= n by line and we know X >= n by line

== FIB(x-2) + FIB(x-1) by line

by line

by line

by FIB definition and x >= 0 by line

, Which

The returned value \result is the value of ¢ after the loop, so to show that the
postcondition on line 10 holds when n >= 2, it suffices to show ¢ ==

FIB(n)

(b) Loop invariant holds initially

Complete the argument for the loop invariants holding initially by giving appropri-

ate line numbers.

The loop invariant 2 <=

The loop invariant x <=

The loop invariant on line 20 holds initially by line(s)

The loop invariant on line 21 holds initially by line(s)

x on line 19 holds initially by line(s)

n on line 19 holds initially by line(s)

The loop invariant on line 22 holds initially by lines 13, 14, and 15.




1pt

1pt

15-122 Homework 2

Page 10 of 15

(c) Loop invariant preserved through any single iteration of the loop

-

™

w

SN

5

11

13

14

16

()

Based on the given loop invariants, write the body of the loop. DO NOT use the
specification function FIB(). The specification function is meant to be
used in contracts only. Also, do not call fast_fib recursively, since this

isn’t fast!

(NOTE: To check your answer, you would prove that the loop invariants are pre-
served by an arbitrary iteration of the loop, but you don’t have to do that for us
here — we’ll cover that process in Question 4.)

while (x < n)

//@loop_invariant 2
//@loop_invariant a
//@loop_invariant b
//@loop_invariant c

{

<= X && X <= n;
== FIB(x-2);

== FIB(x-1);

== a + b;

X =
a =
b =
Cc =

}

return c;

The loop terminates

The postcondition is satisfied only if the loop terminates. Explain concisely why
the function must terminate with the loop body you gave in part c.

The integer quantity

is strictly decreasing because

Since the loop terminates if this quantity reaches 0 or less and this quantity is
strictly decreasing, the loop must terminate.




15-122 Homework 2 Page 11 of 15

4. The preservation of loop invariants

The core of proving the correctness of a function with a loop is proving that the loop
invariant is preserved — that if the loop invariant holds at the beginning of an iteration
(just before the loop guard is tested), it still holds at the end of that iteration (just
before the loop guard is tested the next time).

For each of the following loops, state whether the loop invariant is ALWAYS PRE-
SERVED or NOT ALWAYS PRESERVED. If you say that the loop invariant is always
preserved, prove this. If you say that the loop invariant is not always preserved, give a
specific counterexample. When we ask for a counterexample, what we mean is that we
want specific, concrete values of the local variables such that the loop guard and loop
invariant will hold before the loop body executes for some iteration, but where the loop
invariant will not hold after the loop body executes that one iteration.

We give two solved examples to give you an idea of how to write your solutions. Integers
are defined as C0’s 32-bit signed two’s-complement numbers; be careful about this when
you think about counterexamples!

(a)

1 while (x <= vy)
» //@loop—invariant x < y;

s {

Solution: NOT ALWAYS PRESERVED
Counterexample: x=2 and y=3, satisfies loop invariant and loop guard.
After this iteration, x=3 and y=3, violating loop invariant.

(b)
1 while (x + 1 < vy)
> //@loop_invariant x <y + 1;

s {

Solution: ALWAYS PRESERVED.

Assume X < y + 1 (line 2) before an iteration. We must show x'< y + 1
after an iteration.

Since x" = x + 2 (line 4), we need to show x + 2 <y + 1L

- X+1l<y (line 1)

- X+ 2<=y (because X + 1 < y)

— y<y+1 (line 2 lets us know y != int_max())
- X+2<y+1 (because X + 2 <= yandy <y + 1)




15-122 Homework 2 Page 12 of 15

Ipt (c)
1 while (x < y && x <= 15122)

» //@loop_invariant x <= y;

s {

4 if (0 <= z & z < 10) {
5 X =X+ z;

6 }

7}

NOT ALWAYS PRESERVED

Counterexample: x = LY = , 2=

The loop invariant and loop guard are satisfied at the start of the iteration but
the loop invariant is not satisfied at the end of that iteration.

1pt (d)
. while (i <= x)

» //@loop_invariant x < vy;
s //@loop_invariant i <= y;
a {

5 i++;

s }

ALWAYS PRESERVED

The first loop invariant is always true because

For the second loop invariant, we assume that : < y and want to show that
i" <3 (or equivalently i < y since y does not change in the loop).

Using operational reasoning for one iteration:

By line 5, i’ =

By line 1, <z+1.

By line 2, z +1 <

The previous three statements taken together imply that i < y.




15-122 Homework 2 Page 13 of 15

©

1

2

11
12
13
14
15
16
17
18
19

20

In this example, you are using two functions with the following declarations:

bool f(int x);

int mid(int lower, int upper)
/*@requires 0 <= lower && lower < upper; @x/
/*@ensures lower <= \result && \result < upper; @x/ ;

That is, mid(lower, upper) takes two integers and returns an integer in the non-
empty range [lower, upper). The function f(x) takes an integer and returns
a bool; we don’t know anything about its return value, so we reason about both
cases.

Now consider the following code that uses functions f and mid:

while (lower < upper)
//@loop_invariant 0 <= lower && lower <= upper;

{
m = mid(lower, upper);
if (f(m)) {
lower = m+1;
} else {
upper = m;
}
}

ALWAYS PRESERVED (Complete the indicated parts of the proof)

Assume:

To show:

Case 1: f(m) returns true

By lines 15 and 16, lower’ =

By line 15, upper’ =

Therefore. . .

Case 2: f(m) returns false

By line 15, lower’ =

By lines 15 and 18, upper’ =

Therefore. .. (Skip this, as it looks much like the previous case)




15-122 Homework 2 Page 14 of 15

Ipt (f)
1 while (a > 1)
» //@loop_invariant a >= 1;

Ipt (&) .
1 while (i < 24)

» //@loop—invariant 0 <= i;

s //@loop_invariant 2*i == j;
a |

5 i++;

6 if(i %7 > 0) {

7 j += 2;

s}

o }




15-122 Homework 2 Page 15 of 15

Ipt (h)
1 while (0 <= b & b < a)
: //@loop_invariant a % 17 == 0 & b % 17 == 0;

s {




