
15-122 Programming 8 Page 1 of 7

15-122: Principles of Imperative Computation, Spring 2016

Homework 8 Programming: Generic Queues

Due: Sunday 3rd April, 2016 by 22:00

For the programming portion of this week's homework, we'll explore a slight variant on the
queue data structure discussed in class. The challenge of this assignment is primarily adding
new functionality to generic queues and then translating this data structure into C.

The code handout for this assignment is at

qatar.cmu.edu/~srazak/courses/15122-s16/hws/queues-handout.tgz

The �le README.txt in the code handout goes over the contents of the handout and explains
how to hand the assignment in. There is a 5 handin limit for this assignment. Additional
handins will incur a quarter-point penalty per handin.

1 A Di�erent Implementation of Queues

The function is_segment(start, end) used for the queues and stacks in the lecture notes
was based on the idea of inclusive/exclusive bounds: the data is stored in the list nodes from
start (inclusive) to end (exclusive).

In this assignment, we'll do things di�erently and implement queues based on the idea
of inclusive list segments. Here is how we de�ne them:

• If start is NULL, then there is an inclusive list segment of length 0 from start to end
(for any value of end, in other words, we don't care what end is).

• If start and end are the same and start->next is NULL, then there is an inclusive
list segment of length 1 from start to end.

• If start and end are di�erent and there is an inclusive list segment of length n > 0
from start->next to end, then there is an inclusive segment of length n + 1 from
start to end.

1.1 Basic Queues (New Data Structure Invariant)

A queue's header node contains three �elds, front, back, and size, and it represents a valid
queue if there is an inclusive list segment of length Q->size from Q->front to Q->back.
This means the queues you will implement for this assignment appear to take one of the two
forms in Figure 1, depending on whether or not they are empty.

c© Carnegie Mellon University 2016

qatar.cmu.edu/~srazak/courses/15122-s16/hws/queues-handout.tgz


15-122 Programming 8 Page 2 of 7

Figure 1: Illustration of the data structure invariants for this assignment.

Figure 1 is inaccurate in one way: our queues will be generic, so the data �eld contains
data of type void*. Therefore, the data �eld at the front of the second queue could not
actually contain the number 8. At best, it could contain an int*, pointing to allocated
memory containing the number 8. Unlike other data structures like hash sets, we do allow
the generic pointers in a queue to be NULL.

Task 1 (2 points) In queue.c1, implement the speci�cation function is_queue(Q) ac-
cording to the speci�cation above.

The basic interface for queues is mostly the same as the one in class, extended to be generic
by making the elements void pointers. Another di�erence is that we expose a constant-time
function that reports on the size of the queue, since we're storing that information anyway.

Task 2 (2 points) In queue.c1, implement the standard queue interface: constant-time
functions queue_new, enq, deq, and queue_size, for this data structure.

// typedef ______* queue_t;

queue_t queue_new() /* O(1) */
/*@ensures \result != NULL; @*/ ;

int queue_size(queue_t Q) /* O(1) */
/*@requires Q != NULL; @*/
/*@ensures \result >= 0; @*/ ;

/* O(1) -- adds an item to the back of the queue */
void enq(queue_t Q, void* x)
/*@requires Q != NULL; @*/ ;

/* O(1) -- removes an item from the front of the queue */
void* deq(queue_t Q)
/*@requires Q != NULL && queue_size(Q) > 0; @*/ ;

Your functions should work correctly for any data structures that obey the queue data
structure invariant.

c© Carnegie Mellon University 2016



15-122 Programming 8 Page 3 of 7

1.2 Extending the Interface

In this section, we'll implement two additional library functions that, like queue_size,
could have been implemented by a client using only the four functions above, but that can
be implemented in a more e�cient way inside the implementation.

/* O(i) -- doesn’t remove the item from the queue */
void* queue_peek(queue_t Q, int i)
/*@requires Q != NULL && 0 <= i && i < queue_size(Q); @*/ ;

/* O(n) */
void queue_reverse(queue_t Q)
/*@requires Q != NULL; @*/ ;

The queue_peek operation allows the queue to be accessed like an array. Using the
second example queue from the introduction, queue_peek(Q,0) would return (a pointer to)
8, queue_peek(Q,1) would return (a pointer to) 5, and queue_peek(Q,2) would return (a
pointer to) 15. Peeking at the next-to-be-dequeued element (index 0) should be a constant
time operation.

The queue_reverse function modi�es a queue so that all the elements are in the opposite
order they were in before: the old back is the new front, the old front is the new back, and
everything in between is switched around. Your implementation of queue_reverse should
not require you to allocate any extra memory. This is only possible because you're extending
the library implementation: you'll have to �gure out how to reverse all the pointers in the
linked list. This is a tricky problem: use loop invariants to guide you!

Task 3 (3 points) In queue.c1, implement the linear-time functions queue_peek(Q,i)
and queue_reverse(Q), for our variant implementation of queues.

Note: These functions must not allocate memory, either directly by calling alloc or
indirectly by calling queue_new or enq.

c© Carnegie Mellon University 2016



15-122 Programming 8 Page 4 of 7

2 Generic Operations on Generic Queues

The additional C1 features of generic pointers (void*) and function pointers open up the
possibility for new operations on queues that analyze the contents of the queue without
modifying (dequeuing from or enqueuing onto) the queue.

2.1 Implementing Generic Interfaces

The �rst operation we'll ask you to implement is relatively simple. Given a function prop that
takes an element in the queue and returns true or false, the function queue_all(Q,&prop)
checks that prop returns true on all elements of the queue by applying the function to every
element one-by-one.

typedef bool check_property_fn(void* x);

/* O(n) worst case, assuming P is O(1) */
bool queue_all(queue_t Q, check_property_fn* P)
/*@requires Q != NULL && P != NULL; @*/ ;

Remember that we said x ≥ A[i..j] was always true when i = j. The array segment contains
no elements, so x is greater than or equal to every one of them! By the same token, if we call
queue_all(Q, &prop) on an empty queue, we know that the function prop returns true
on every element in the queue.

The next operation, an iterator, is a bit more complicated and a lot more powerful.
Iterators take an initial piece of data, the base case, as well as a pointer to a function f. If the
queue Q contains the elements e1, e2, e3, and e4, then calling queue_iterate(Q,base,&f)
will compute

f(f(f(f(base, e1), e2), e3), e4)

whereas if Q is empty queue_iterate(Q,base,&f) will just return base.

typedef void* iterate_fn(void* accum, void* x);

/* O(n) worst case, assuming F is O(1) */
void* queue_iterate(queue_t Q, void* base, iterate_fn* F)
/*@requires Q != NULL && F != NULL; @*/ ;

Task 4 (2 points) In queue.c1, implement the functions queue_all and queue_iterate
according to the description given above. Neither function should modify the existing queue
beyond what their functinal argument may do.

2.2 Using Generic Interfaces

The next task will have you explore generic interfaces by writing short functions that can be
passed to generic functions to perform various computations.

c© Carnegie Mellon University 2016



15-122 Programming 8 Page 5 of 7

Task 5 (4 points) In a new �le queue-use.c1, implement the following functions, which
are intended to be passed to either queue_all or queue_iterate. Your code in this �le
should respect the queue interface.

For all of these questions, you can assume that the queue you're working with contains
pointers to integers. That is, you can assume \hastag(int*,x) will return true for every
data element in the structure. This means every data element is either NULL or an int*
that has been cast to void*. The functions you write should enforce this as a precondition,
and should in general have preconditions that ensure safety. Only incr should cause any of
the data in the queue to be changed.

1. A function even such that queue_all(Q,&even) returns true if all the pointers in Q
are non-NULL and all point to non-negative, even integers.

2. A function odd such that queue_all(Q,&odd) returns true if each pointer in Q is
either NULL or a pointer to positive, odd integers.

3. A function incr such that queue_all(Q,&incr) always returns true, but after the
function is run, all the non-NULL pointers in the queue should have the integers they
point to incremented by 1.

4. A function find_negative such that queue_iterate(Q,NULL,&find_negative)
returns NULL if there are no pointers to negative numbers in the queue, and returns
the pointer to the negative number closest to the front of the queue if any such element
exists. The function should have \hastag(int*,\result) as a postcondition.

5. A function copy such that queue_iterate(Q,(void*)queue_new(),&copy) returns
a copy of the queue. The function should have \hastag(queue_t,\result) as a
postcondition.

6. A function insert, which takes two non-NULL void pointers that are actually pointers
to integers and always returns the �rst pointer, but that also swaps the integers if the
second one is larger than the �rst one.

The last function you wrote, insert, allows you to implement insertion sort! The following
code reads out the integers from Q one by one and creates a sorted queue R with the same
integers (though di�erent pointers).

queue_t R = queue_new();
while (queue_size(Q) > 0) {

int* p1 = alloc(int);
void* p2 = deq(Q);
//@assert p2 != NULL && \hastag(int*, p2);

*p1 = *(int*)p2;
queue_iterate(R, (void*)p1, &insert);
enq(R,(void*)p1);

}

c© Carnegie Mellon University 2016



15-122 Programming 8 Page 6 of 7

3 Queues in C

For the last part of the assignment, we will turn our C1 queues into a C implementation of
queues. Your queue.c should begin with at least the following declarations:

#include <stdlib.h> // Standard C library: free(), NULL...
#include <stdbool.h> // Standard true, false, and bool type
#include "lib/contracts.h" // Our contracts library
#include "lib/xalloc.h" // Our allocation library
#include "queue.h" // The queue interface

Here is an incomplete list of the changes you will need to make as you adapt your C0/C1
code to C:

• Change calls from alloc and alloc_array to their C analogues. Use the xalloc
library which de�nes xmalloc and xcalloc. These functions abort rather than re-
turning NULL when no more memory is available.

• Change @requires, @ensures, and @assert contracts into REQUIRES(), ENSURES(),
and ASSERT() C contracts.

• Whenever you are about to lose track of memory (for instance, an allocated list node
when dequeuing an element), that memory must be freed.

• Use type size_t instead of int for quantities that are supposed to be array (or queue)
o�sets; we'll use size_t instead of int for storing the size of the queue in C. Integers
of type size_t are unsigned, so you don't need to check that they're non-negative.

• Change array types like char[] to pointers char*. Be careful: this means that you
now have to check that arrays are non-NULL! (Although you didn't use arrays in your
queue implementation, you may need to be aware of this if you used arrays in any test
code you wrote.)

As a stylistic issue, we write

int* x = alloc(int);
char[] A = alloc_array(char, 10);

in C0/C1 but write

int *x = xmalloc(sizeof(int));
char *A = xcalloc(10, sizeof(char));

in C. Attaching the * to the variable instead of the type is consistent with the C idea of
making the de�nition of a variable look like the way it is used. We won't be picky about
this stylistic issue on this assignment, though.

Task 6 (5 points) Copy the implementation of queue.c1 to queue.c, making sure to

include the interface by writing #include "queue.h" within the �le queue.c. Then adapt
your code following the guidelines above so that it is a correct implementation in C.

c© Carnegie Mellon University 2016



15-122 Programming 8 Page 7 of 7

Handling Deallocation

As is common with C0/C1 to C translations, we have to extend our interface with a function
that the client can use to deallocate all the memory reserved for our data structure. (This is
a separate issue from any deallocations that may occur as the queue implementation mutates
the structure.)

In some cases, the client will want to think of the queue implementation as owning the
pointers stored in the queue. If the queue owns its data, when we free the queue, we must
also cause all the data stored in the queue to be freed. But we can't just call free on every
pointer in the queue, because we might have a queue of queues or a queue of binary search
trees: the client has to specify a function pointer that tells us how to free the data in the
queue.

typedef void elem_free_fn(void *x);

void queue_free(queue_t Q, elem_free_fn* F)
/*@requires Q != NULL; @*/ ;

If F is NULL, then we free only the queue's internal data structures, and not the pointers
stored in the queue. This means that the queue's data elements are owned elsewhere, and
some other data structure has responsibility for freeing the pointers.

Task 7 (2 points) In queue.c, implement the queue_free function. It should always free
all the internal memory allocated for the queue itself, and if the function pointer F is not
NULL, then the function it points to should be applied to every void* that the client has
enqueued in the queue.

None of the functions in your queue interface should leak data: you should check this
by writing test cases that free all their data and then running these test programs under
valgrind.

c© Carnegie Mellon University 2016


	A Different Implementation of Queues
	Basic Queues (New Data Structure Invariant)
	Extending the Interface

	Generic Operations on Generic Queues
	Implementing Generic Interfaces
	Using Generic Interfaces

	Queues in C

