
15-122 Programming 2 Page 1 of 8

15-122: Principles of Imperative Computation, Spring 2016

Programming 2: Pixels

Due: Thursday 28th January, 2016 by 22:00

This second programming assignment is designed to get you used to writing some precon-
ditions and postconditions, deals with operations on integers, and introduces the idea of an
interface.

The code handout for this assignment is on Autolab and at

http:
//www.qatar.cmu.edu/~srazak/courses/15122-s16/hws/pixels-handout.tgz

The �le README.txt in the code handout goes over the contents of the handout and explains
how to hand the assignment in. There is no limit on the number of times you may hand in
this assignment on Autolab.

1 Pixels

To capture the contents of a single pixel, we need to know two things: how opaque or
transparent it is, and what color it is.

One common way to do this is called ARGB.1 The transparency is stored as an integer
in the range [0, 256), where 0 is completely transparent and 255 is completely opaque. This
is called the alpha (A) value. The color is stored as three other integers, each also in the
range [0, 256), which respectively describe the intensity of the red (R), green (G), and blue
(B) color in the pixel. So a pixel is described by four numbers between 0 (inclusive) and 256
(exclusive).

There are many ways to represent a pixel! One way to take the four numbers that make
up a pixel is by packing them inside a 32-bit C0 int, breaking that int up into 4 components
with 8 bits each:

a0a1a2a3a4a5a6a7 r0r1r2r3r4r5r6r7 g0g1g2g3g4g5g6g7 b0b1b2b3b4b5b6b7

1http://en.wikipedia.org/wiki/RGBA_color_space

c© Carnegie Mellon University 2016

https://autolab.andrew.cmu.edu/courses/15122-s16/
http://www.qatar.cmu.edu/~srazak/courses/15122-s16/hws/pixels-handout.tgz
http://www.qatar.cmu.edu/~srazak/courses/15122-s16/hws/pixels-handout.tgz
https://autolab.andrew.cmu.edu/courses/15122-s16/
http://en.wikipedia.org/wiki/RGBA_color_space


15-122 Programming 2 Page 2 of 8

where:

a0a1a2a3a4a5a6a7 represents the alpha value (how opaque the pixel is)
r0r1r2r3r4r5r6r7 represents the intensity of the red component of the pixel
g0g1g2g3g4g5g6g7 represents the intensity of the green component of the pixel
b0b1b2b3b4b5b6b7 represents the intensity of the blue component of the pixel

Each 8-bit component can range between a minimum of 0 (binary 00000000 or hex 0x00)
to a maximum of 255 (binary 11111111 or hex 0xFF).

c© Carnegie Mellon University 2016



15-122 Programming 2 Page 3 of 8

In the �le pixel.c0, right at the top we announce that we will be working with a type
pixel that is actually represented as a single integer by writing a type de�nition:

typedef int pixel;

The rest of the �le should contain the implementation of an interface to the newly-de�ned
pixel type (see Section 3 for what interfaces are exactly). By using this interface, we can
manipulate pixels as four integers for red, green, blue, and alpha values instead of worrying
exactly how they are packed into an integer.

Task 1 (3 points) Complete the C0 �le pixel.c0. Translate the English descriptions into
code and the English contracts into C0 contracts.

You can load your completed �le into coin. Remember to use the -d �ag to check contracts.

% coin -d pixel.c0
--> make_pixel(255, 238, 127, 45);

2 Testing

We can generally think about four ways that a program might fail:

1. Do something unsafe: access an array out of bounds, divide by zero, call a function
with inputs that violate the function's preconditions.

2. Violate a loop invariant, an assertion, or a postcondition.

3. Return the wrong answer without violating any contracts.

4. Fail to terminate.

For the fast exponent function we considered in lectures 1 and 2, failure #3 was impossible:
the postcondition speci�ed that exactly the right answer was returned. That won't always
be the case, and it wasn't the case for pixel.c0.

Task 2 (2 points) Make a copy of the pixel.c0 �le named pixel-bad.c0:

% cp pixel.c0 pixel-bad.c0

c© Carnegie Mellon University 2016



15-122 Programming 2 Page 4 of 8

Edit this �le so that it contains a broken implementation of pixels. Keep the contracts the
same, and avoid failures #1 and #4 � the program should remain safe and should terminate.
However, at least one function should sometimes violate its postcondition (#2, a contract
failure) and at least one function should sometimes give the wrong answer without violating
a postcondition (#3, a contract exploit).

Task 3 (3 points) Write a �le pixel-test.c0 that checks for both contract failures and

contract exploits in an implementation of the pixels interface. (See Appendix A or the �le
puzzle-test.c0 distributed with the previous programming homework for an example of
how to do this for the common_prefix function.) At minimum, the test should catch the
bugs you made intentionally:

% cc0 -w -d pixel.c0 pixel-test.c0
% ./a.out

<Should run without errors>

% cc0 -w -d pixel-bad.c0 pixel-test.c0
% ./a.out

<An assertion should fail>

On Autolab we'll run your tests against some of our buggy pixel implementations too; you'll
need to catch bugs in our buggy pixel implementations for full credit.

3 Introduction to interfaces

It's useful to be able to store all the parts of a pixel within a single integer. But it's not
necessary to store the alpha value in the leftmost (i.e. high-order) 8 bits, nor is it necessary to
store the blue value in the rightmost (i.e. low-order) 8 bits. In fact, it's not even necessary
to store pixels as integers at all! The �le pixel.c0 de�nes the type pixel and de�nes
�ve functions: make_pixel(a,r,g,b) tells us how we can create pixels, and get_red(p),
get_green(p), get_blue(p), and get_alpha(p) tell us what we can do to pixels. We
can say that these �ve functions form the interface to pixels � if we only use those �ve
functions to interact with the pixel type, then we can easily change the representation of
pixels without any of our code breaking. It's the implementation you wrote that declares a
pixel to be an 32-bit integer.

A simple way we might change the implementation would be to store the bits in a
di�erent order. A more drastic way that we might change the implementation is in the �le
pixel-array.c0. In that implementation, pixels are stored not as single integers but as
arrays of four integers:

c© Carnegie Mellon University 2016

https://autolab.andrew.cmu.edu/courses/15122-s16/


15-122 Programming 2 Page 5 of 8

% coin -d pixel.c0
--> pixel p = make_pixel(255,238,127,45);
p is -1147091 (int)
--> get_green(p);
127 (int)

% coin -d pixel-array.c0
--> pixel p = make_pixel(255,238,127,45);
p is 0x603A60 (int[] with 4 elements)
--> get_green(p);
127 (int)

While the person implementing the pixel interface obviously knows whether a pixel is
an integer or an array, the person using the pixel interface should treat the type pixel
as an unknown type (or abstract type), and shouldn't rely on details of how the type is
implemented. In this class, we'll use a typedef with underscores to emphasize that an
interface de�nes an abstract type:

typedef ______ pixel;

This notation isn't actual valid C0, though, so you'll often see it as a comment in a C0 �le
next to the actual type de�nition.

An interface allows us to separate the library code, which understands the implementation
details, from the client code, which only knows about the interface. Setting up interfaces is
an important part of writing code � and this is even true when you're the person writing
both the library code and the client code! Interfaces are the basis of how we organize our
code and our large software projects. We'll be talking more about interfaces later in this
class.

4 Pixel manipulation and array aliasing

In this last part of this assignment, you will write code that uses this pixel interface:

/* Interface to pixels */

typedef ______ pixel

pixel make_pixel(int alpha, int red, int green, int blue)
int get_alpha(pixel p)
int get_red(pixel p)
int get_green(pixel p)
int get_blue(pixel p)

c© Carnegie Mellon University 2016



15-122 Programming 2 Page 6 of 8

The code you write for these tasks should respect the pixel interface � that is, your code
shouldn't make any assumptions about what a pixel is other than that a pixel can be created
with the make_pixel function and passed to the four get_ functions. If you write code that
respects the pixel interface, then you should be able to test your tasks.c0 �le against both
your pixel.c0 and pixel-array.c0.

1 % coin -d pixel.c0 tasks.c0
2 % coin -d pixel-array.c0 tasks.c0

The converse is nearly true as well: if your tasks.c0 can compile and run against both
pixel.c0 and pixel-array.c0, you can be pretty con�dent that it respects the interface.

The comments in tasks.c0 walk through the tasks in the rest of the assignment: red re-
moval, quantization, and returning multiple arguments. You can run and test your code with
coin as described above, or you can write, compile, and run a test �le like tasks-test.c0,
as described in README.txt.

Task 4 (1 point) Complete function remove_red in �le tasks.c0.

Task 5 (2 points) Complete function quantize in �le tasks.c0.
Quantization is a transformation on pixels. It can be performed on all the pixels in an

image to reduce the total number of colors used in that image.
Given a pixel and a quantization level q in the range [0, 8), we quantize by taking each

color component (red, green and blue) and clearing the lowest q bits. For example, suppose
we have a pixel with red intensity R = 107, green intensity G = 190, and blue intensity
B = 215. The color components of this pixel are represented by these bytes:

RED GREEN BLUE
01101011 10111110 11010111

If the quantization level is 5, then the resulting pixel should have the following color com-
ponents (note how the lower 5 bits are all cleared to 0):

RED GREEN BLUE
01100000 10100000 11000000

A pixel processed with a quantization level of 0 should not change. For each pixel, do
not change its alpha component.

Task 6 (2 points) Complete function test_quantize in �le tasks.c0.

Task 7 (2 points) Complete function count_zeroes in �le tasks.c0.

c© Carnegie Mellon University 2016



15-122 Programming 2 Page 7 of 8

A Testing GCD

Say we have a function that is supposed to �nd the greatest common divisor of two positive
integers. (We haven't talked about how to write such a function, but you've seen bits and
pieces; search for �Euclid's algorithm� if you'd like to implement this function.)

int gcd(int x, int y)
//@requires x > 0 && y > 0;
//@ensures 0 < \result && x % \result == 0 && y % \result == 0;

The postcondition isn't the best one we could write � it checks that the result is a divisor
of x and y, not the greatest common divisor. A function that ignores its inputs and always
returns 1 satis�es this contract but is nevertheless an incorrect implementation of gcd.

We'll write some unit tests in a �le gcd-test.c0 that includes a main function. To
check for contract exploits, we need to make extra assertions that the output of the function
is correct. We could do this with the contract, but it also makes sense to use the built-in
assert() function that runs whether or not -d is selected.

1 #use <util>
2 #use <conio>
3

4 int main() {
5 // Run some edge cases (check for contract errors only)
6 gcd(1, 1);
7 gcd(1, int_max());
8 gcd(int_max(), int_max());
9 gcd(int_max(), int_max() - 1);

10

11 // Test some regular cases (check for contract errors & exploits)
12 assert(gcd(2, 5) == 1);
13 assert(gcd(19, 21) == 1);
14 assert(gcd(81, 9) == 9);
15 assert(gcd(16, 100) == 4);
16

17 println("All tests passed!");
18 return 0;
19 }

Now we can use this test �le to test both good and bad implementations of GCD:

% cc0 -w -d gcd.c0 gcd-test.c0
% ./a.out

c© Carnegie Mellon University 2016



15-122 Programming 2 Page 8 of 8

All tests passed!
0
% cc0 -w -d gcd-bad.c0 gcd-test.c0
% ./a.out
gcd-test.c0:14.3-14.27: assert failed
Abort trap: 6

c© Carnegie Mellon University 2016


	Pixels
	Testing
	Introduction to interfaces
	Pixel manipulation and array aliasing
	Testing GCD

