15-122 Programming 10 Page 1 of 8

15-122: Principles of Imperative Computation, Spring 2016

Programming Homework 10: Lights Out @

@Qqe@

Due: Sunday 10 April, 2016 by 22:00 q\}

@

In this programming assignment we will play a simple computational game: Lights QOut.
Your Lights Out solver will be a C program where you write the main() function from
scratch. We will give you a helpful set of libraries, and you’ll write some other libraries
yourself. Make sure to look at the libraries we gave you before you start working on your
Lights Out implementation in Task 5!

The code handout for this assignment is at
gatar.cmu.edu/~srazak/courses/15122-s16/hws/lightsout-handout.tgz

The file README . txt in the code handout goes over the contents of the handout and explains
how to hand the assignment in. There is a 10 handin limit for this assignment. Additional
handins will incur a half-point penalty per handin.

For this assignment, it is permissible (and encouraged!) to share game boards (test input)
that you’re using, as long as you do this sharing publicly on Piazza.

Task 1 (0 points) This assignment will not be graded for style.

However you will still find it helpful to develop good style habits: reasonable contracts, at
most 80-character lines, and comments that make it clear to a reader how your algorithm
works and what invariants you expect to hold. You should use the libraries provided for you
to make your code simpler and clearer. We expect you to write your own helper functions
when appropriate. Bad style will have no direct effect on your grade but will make your life
harder.

(© Carnegie Mellon University 2016


qatar.cmu.edu/~srazak/courses/15122-s16/hws/lightsout-handout.tgz

15-122 Programming 10 Page 2 of 8

The Lights Out Game

Lights Out is an electronic game consisting of a grid of lights, usually 5 by 5. The lights are
initially in some pattern of on and off, and the objective of the game is to turn all the lights
off. The player interacts with the game by touching a light, which toggles its state and the
state of all its cardinally adjacent neighbors (up, down, left, right).

We represent boards as a vector of bits (see Section . When printing boards in ASCII we
represent a square that is “on” (represented by the bit 1 or true) with a ‘# and a square
that is “off” (represented by the bit 0 or false) with a ‘0’. A touch is described by a
‘row:column pair’ as in previous assignments. On Andrew, we have provided an executable
file, Lloplayer, that allows you to play Lights Out. The text in italics below represents the
part that you would type in during this session.

% loplayer boards/board0.txt
#0000

00000

00000

00000

00000

1:3

Flipping 1:3
#00#0

O0###

000#0

00000

00000

2:)

Flipping 2:4
#00#0

00##0

0000#

0000#

00000

You can exit loplayer by typing in something invalid, by pressing Ctrl-D, or by winning
the game and turning all the lights out.

(© Carnegie Mellon University 2016



15-122 Programming 10 Page 3 of 8

1 Bit Vectors

The pixel type used a single 32-bit integer to efficiently store four 8-bit numbers. A single
32-bit integer could, by the same principle, store up to 32 true/false values. That is what the
bit vector implementation that you will be implementing does. Bit vectors are an abstraction
that assists us in efficiently manipulating small sequences of bits. We’ll use these sequences
of true/false bits to store the on/off squares in a Lights Out board.

The function bitvector_new() gives us a fresh bit vector containing only false bits,
the function bitvector_get(B, i) tells us whether the ith bit of the vector is true, and
the function bitvector_equal(B1l, B2) returns true if all the bits in B1 and B2 are the
same. Obviously, we could implement bitvector_equal by calling bitvector_get in a
loop, but we expect that the library may be able to implement a more efficient equality
check.

The function bitvector_flip(B, i) returns a new bit vector that is just like B except
that the 1" bit is flipped. Unlike C and CO arrays, bit vectors are a persistent data structure:
when we flip a bit in a bit vector, the old bit vector stays the same and we return a new bit
vector with the bit toggled.

Task 2 (4 points) Implement the lib/bitvector.h interface in a file called bitvector.c.

This task is all you need to do in order to successfully begin working on your Lights Out
implementation. However, there are two additional challenges for your bit vector implemen-
tation. First, notice that the macro-defined constant BITVECTOR_LIMIT is set to be 25 in
your version of lib/bitvector.h. Given that the type bitvector is a 32-bit unsigned
integer, the constant BITVECTOR_LIMIT could just as easily be set to 8 or 32 (but not 33 or
42).

Task 3 (1 point) Make your implementation of bitvector.c work correctly regardless of
what BITVECTOR_LIMIT is. You should assume that this limit is greater than 0 and less
than or equal to the number of bits in the type bitvector.

The type bitvector is defined in lib/bitvector.h to be a 32 bit unsigned integer.
But if we need bit vectors of length 33 or 42, it should be possible to use a larger unsigned
integer type, and if we only need bit vectors of length 7, it should be possible to use a smaller
unsigned integer type.

Task 4 (1 point) Make your implementation of bitvector.c work correctly regardless
of what unsigned integer type bitvector is defined to be. You may assume that whatever
unsigned integer type bitvector is defined to be has at least BITVECTOR_LIMIT bits in its
representation.

Using Bit Vectors

Remember that, in the pixels assignment, we gave you a separate implementation of pixels
that stored these four numbers in an array with length 4. It’s similarly possible to use either
a 32-bit integer or a bool array with length 25 to store 25 true/false values. Because we are

(© Carnegie Mellon University 2016



15-122 Programming 10 Page 4 of 8

using C, an array implementation would presumably lead to unrecoverable memory leaks,
because we don’t expose a bitvector_free function.

We will compile your code that uses bit vectors against such other implementations,
including an implementation that is a bool array. Aside from memory leaks, your code for
tasks 4-6 should work with these other implementations. In other words, for the remainder
of the assignment, you should respect the bitvector interface: you shouldn’t assume you
know anything about how a bit vector is implemented.

2 Hash Tables

The algorithm we describe for solving Lights Out is going to use hash tables which will
store Lights Out boards that have already been looked at — this prevents you from doing
computation for them again. We provide you with the generic version of automatically-
resizing, separate-chaining hash dictionaries as described in lib/hdict.h — you do not
have to implement hash tables from scratch.

However, instantiating the client interface and casting void pointers correctly in C is
error-prone. For this task, you will implement, in board-ht.h and board-ht.c, a wrapper
around the hdict interface that handles the tricky parts.

Specifically, the functions you will have to implement are:

e ht_new, which creates a new, initially empty, hashtable and correctly instantiates the
client interface.

e ht_insert, which adds a new struct board_data to the table.

e ht_lookup, which looks up structs in the hash table based on the key, a bitvector
stored in the board field of the struct.

When the ht_insert function is given a struct DAT, it needs to perform an insertion
into the hash table using hdict_insert. The value stored in the hash table should be a
pointer to the struct DAT that is passed to ht_lookup. The key should be a pointer to the
board array of the same struct; you’ll need to take the address of DAT->board to get this
pointer.

There is no ht_free because it would work the same way as the free function provided
by the hdict interface. Pointers added to the hash table with ht_insert are owned by the
table, and should be freed when hdict_free is called

Task 5 (5 points) Implement the lib/board-ht.h interface in a file called board-ht.c.

You’re not required to use these hash tables in your Lights Out implementation, but we
certainly suggest you do! Whether you use them or not, your implementation of the interface
will be autograded. The elements in the hash table are pointers to struct board_data, a
struct with two fields.

You can edit board-ht.h to add any fields that you want to the struct board_data,
but the autograder will require that the original two fields remain the first two fields in the
struct.

(© Carnegie Mellon University 2016



15-122 Programming 10 Page 5 of 8

3 Lights Out

In this section, you will implement a solver that can decide whether or not a board is solvable,
and that describes how to solve boards that can be solved.

A reference solution, which is about as efficient as your solution needs to be, can be found
on Andrew with the name lightsout-ref.

% lightsout-ref boards/3x2-34.txt
Here’'s the board we’re starting with:
#00

##0

Board is solvable.

Solution bitmap (the squares marked # need to be pushed to solve):
000

#00

% lightsout-ref boards/3x2-32.txt
Here’s the board we’re starting with:
#O#

#00

No solution was found!

Your implementation of a solver for Lights Out in lightsout.c should produce an ex-
ecutable that takes one command-line argument, the filename of a file containing a board
which can be read with the file_read function from lib/boardutil.h. The output
from your solver will be a bit different than the output from the reference solu-
tion; read the instructions carefully.

To take command-line arguments in C, you need to write a main function with two argu-
ments, argc (argument count, the number of command-line arguments) and argv (argument
values an array of strings, the actual command-line arguments). Our implementation begins
like this:

int main(int argc, char xxargv) {
if (argc !'= 2) {
fprintf(stderr, "Usage: lightsout <board name>\n");
return 1;

}

char xboard_filename = argv[1];

If you want to print out debugging information or error messages in your implementation,
you should use fprintf(stderr,...) instead of printf(...) the way we do above. Do
not use printf. Using fprintf(stder,...) ensures that all error messages or debugging

(© Carnegie Mellon University 2016



15-122 Programming 10 Page 6 of 8

outputs go to standard error, which will be critical for Task 6. (Output from failed contracts
automatically goes to standard error.)

3.1 Solving Lights Out

The return value of main in a C program is treated as meaningful to the operating sys-
tem. Returning 0 means the program ran successfully and returning anything else means
the program ran unsuccessfully. For your Lights Out solver, the main() function in your
implementation must return 0 if the board can be solved, and should return 1 if there was
an error or if the Lights Out board cannot be solved. A C program will not print out the
returned integer like a CO program does, so you probably want to print a helpful “board
could be solved” or “board could not be solved” message to standard error.

Task 6 (5 points) Implement a Lights Out solver in lightsout. c that takes a board and
reports whether or not the board is solvable by returning 1 or 0 from the main() function.

Any valid implementation of Lights Out with reasonable performance will get points.
You're welcome to be creative, but any creative idea you implement should be your own.
(There are academic papers on the mathematics of Lights Out and its solutions, including a
1989 paper by the computer science department’s own Klaus Sutner! But for this assignment,
if you do something different than the strategy outlined in this writeup, it should be your
own idea.) We suggest that you first implement the breadth-first search algorithm outlined
in Section [3.4 But if you want a challenge, you're encouraged to try and figure out an
algorithm on your own.

Your implementation should be free of memory leaks (as reported by valgrind) regard-
less of whether your main function returns @ or 1. Your implementation should also work
regardless of the way bit vectors are implemented.

For this assignment, we have given you a Makefile to help you build your solver. If you
type make after writing bitvector.c, board-ht.c, and lightsout.c it will compile two
executables, lightsout and lightsout-d (the latter is compiled with -DDEBUG). You can
change your Makefile to add new targets (for instance, to run unit tests for your bit vectors).

3.2 Returning the Solution

Task 7 (4 points) Modify your Lights Out solver so that, when it is given a solvable board,
it prints out, to standard output, the series of button pushes that solve the board.

The output of your program should not be like the reference solution’s output. Instead,
if a solution is found, all the moves leading to that solution should be printed, in order, to
standard output (or stdout, which is what printf prints to). The output should be able to
be re-routed into loplayer as input that solves the board. See Section for an example.
(If no solution is found, nothing should be printed to the standard output, and it’s a good
idea to print “No solution” to stderr.)

You may want to add fields to struct board_data to do this task.

An examination of the puzzle leads to interesting observations — changing the state of a
square an even number of times is equivalent to not changing it at all; changing the state an

(© Carnegie Mellon University 2016



15-122 Programming 10 Page 7 of 8

odd number of times is equivalent to changing it only once. Furthermore, the order in which
we touch various squares is unimportant. It is only the number of times that we touch a
square that matters. These facts imply that, if a puzzle can be solved at all, it can be solved
by touching some squares exactly once and others not at all. Thus, a solution consists of
indicating which squares to touch once.

Therefore, one way to complete this task is to store boards in the hash table alongside
a bit vector representing all the moves needed to produce that board. Another option is to
store boards along with the index of the move that got you to that board. Then you can
find the solution by working backwards. When you notice you have a board with all lights
out, re-apply the last move to get the previous board. Then look up that previous board in
the hashtable, which will also give you the move that allowed you to reach that board, and
so on and so forth until you get back to your original board.

3.3 Testing

You’ll want to be sure to test your solver on boards that aren’t symmetric and examples
that aren’t squares. A good way to test your program is to use a Unix pipe, redirecting the
standard output of your Lights Out solver to the standard input of the Lloplayer program:

% ./lightsout boards/3x2-34.txt

:0

% ./lightsout boards/3x2-34.txt | loplayer boards/3x2-34.txt
#00

##0

Flipping 1:0

000

000

You got all the lights out!

=

When testing your solution on the boards we provide, be aware that if you have good
contracts, your code may be too slow to solve the harder boards in reasonable time. Once
you are confident of the correctness of your code, run your tests on ./lightsout, not
./lightsout-d.

Every 2x2 board and an assortment of 3x2 and 4x4 boards are distributed with the
handout. When compiled without -D, your solution should be able to solve all the
2x2 boards (or report no solution) instantly and do the same for any 3x2 and 4x4 board in
seconds at most. The included 5x5 boards may be too challenging for your implementation,
but you should be able to search any 5x5 board that takes less than 6 touches to finish
without much difficulty. You can share test boards and solutions to individual boards on
Piazza.

(© Carnegie Mellon University 2016



15-122 Programming 10 Page 8 of 8

3.4 Suggested Algorithm: Breadth-First Search

The algorithm we will sketch out here for solving Lights Out is called breadth-first search.
The basic version of breadth-first search uses a queue. We start with just the initial board
in the queue, and then we begin a loop. As long as the queue is not empty, one iteration
of the loop removes a board from a queue, computes the effect that each of the 25 possible
button-pushes will have on the board, and then inserts all 25 modified boards back onto the
queue. If we do this very naively, the algorithm will first consider the one board that we
can get to with zero touches, then the 25 boards we can get to with one touch, then the
625 boards we can get to with two touches, then the 15,625 boards we can get to with three
touches, and so on.

This approach will always find a solution if one exists, but it is very wasteful, because we
can get to the rightmost board on page [2|in two different ways: by touching the square in row
1, column 3 and then the square in row 2, column 4 and also by touching the square in row 2,
column 4 and then by touching the square in row 1, column 3. The naive algorithm described
in the previous paragraph unnecessarily considers both of these possibilities separately.

We solve the problem more efficiently with a hash table. When we start the loop, the
initial board is also present in the hash table. Inside the loop, we can compute all 25 possible
moves but we only enqueue and add to the hash table the ones that we haven’t previously
considered. Here is pseudocode for the resulting algorithm:

while ('queue_empty(Q)) {
// Find a board that we haven’t looked at yet from the queue
B = deq(Q);

// Consider all the moves
for (row = 0; row < height; row++) {
for (col = 0; col < width; col++) {
i = get_index(row, col, width, height);
bitvector newboard = press_button(...)

if (number of lights of newboard == 0) {
Free all memory, return 0

}

if (hash table H doesn’t contain newboard) {
Allocate memory for hashtable element N
Set the field N->board to newboard, set other fields
Insert N into the hashtable H
Enqueue N into the queue Q

}
}
}
}

Free all memory, return 1

(© Carnegie Mellon University 2016



	Bit Vectors
	Hash Tables
	Lights Out
	Solving Lights Out
	Returning the Solution
	Testing
	Suggested Algorithm: Breadth-First Search


