
15-110: Principles of Computing
Lecture 4: Abstraction (II)

From Algorithms to Python

August 09, 2022

Today…

• Last session:
• Simplifications, Abstractions

• Today’s session:
• Abstraction (Wrap up), Python!

• Announcements:
• HW1 is due Today at 10 pm.
• Quiz I grades are out
• OH in the ARC Hallway
• Course website: https://web2.qatar.cmu.edu/~mhhammou/15110-f22/index.html

https://web2.qatar.cmu.edu/%7Emhhammou/15110-f22/index.html

Find another problem that can be solved using the same algorithm. Be creative!

• Pasta, Chicken Marinara, Pizza,
Burgers

• Salads
• Cake, cupcake, milkshake,

pancakes, protein shake,
smoothie, Ice-cream

• Coffee, Tea
• …
• CMU Student (college person)
• PC
• Morning call
• Homework
• …
• Wedding Ring
• Paintings (abstract, realism)

Wedding Ring

And the winner is…

Abstraction

• Let us consider again the problem of choosing snacks from a cafeteria
given a certain budget and calorie intake

• The problem can be phrased as follows:
• You want to buy the highest-calorie snack from the below and pay a max of 15 QAR

How
would you
solve this?

Objective:
Maximize

calories without
exceeding a

certain budget
(constraint)

Item Price (QAR) Calories

Muffin 6 480

Croissant 7 595

Chips 10 950

Hamburger 8 800

Chocolate 2 300

Fruit salad 5 200

Abstraction

• Hint: think about the calories per riyal
• Since it is a maximization problem, the higher the better
• In particular, you want the highest number of calories per each riyal (a greedy

strategy) in order to obtain the highest-calorie snack with the 15QAR

Chocolate

Hamburger

300 Cal

800 Cal
+

5/10 of Chips

2 QAR

8 QAR
+

5/10 * 950 Cal
+

5 QAR
+

Item Price (QAR) Calories Calories/Riyal

Muffin 6 480 480/6 = 80

Croissant 7 595 595/7 = 85

Chips 10 950 700/10 = 95

Hamburger 8 800 800/8 = 100

Chocolate 2 300 300/2 = 150

Fruit salad 5 200 200/5 = 40

1,575 Cal 15 QAR

Abstraction

• This worked only because we assumed we can take fractions of items

• If this is not the case, this greedy strategy will not work!
• This problem is known as the 0–1 knapsack problem

Chocolate

Hamburger

300 Cal

800 Cal
+

Fruit Salad

2 QAR

8 QAR
+

200 Cal
+

5 QAR
+

Item Price (QAR) Calories Calories/Riyal

Muffin 6 480 480/6 = 80

Croissant 7 595 595/7 = 85

Chips 10 950 950/10 = 95

Hamburger 8 800 800/8 = 100

Chocolate 2 300 300/2 = 150

Fruit salad 5 200 200/5 = 40

1,300 Cal 15 QAR

Abstraction

• Here is another combination that has more calories, albeit spending
the same amount of money (thus, the greedy approach did not give us
the best answer)

• Solving this problem requires applying another algorithmic approach known as
“dynamic programming”, which is beyond the scope of this class

Hamburger

Croissant

800 Cal

595 Cal
+

8 QAR

7 QAR
+

Item Price (QAR) Calories Calories/Riyal

Muffin 6 480 480/6 = 80

Croissant 7 595 595/7 = 85

Chips 10 950 950/10 = 95

Hamburger 8 800 800/8 = 100

Chocolate 2 300 300/2 = 150

Fruit salad 5 200 200/5 = 40

1,395 Cal 15 QAR

Abstraction

• Let us consider another problem where we have a set of items with
different weights and values

• Your job is to take the highest valuable load in a bag without exceeding
a weight of 15Kg

Item Weight (Kg) Value (QAR)

Sceptre 4 10

Shoes 1 1

Helmet 1 2

Armour 12 4

Dagger 2 2

How
would you
solve this?

Objective:
Maximize value

without
exceeding a

certain weight
(constraint)

Abstraction

• Do you think that this problem is similar to the snack problem?
• They are actually the same!

• If we can craft an algorithm for the snack problem, we can transform it
(with minimal effort) into a solution for this problem

• The core of the two problems is:
a. There is a set of items to choose from, with two associated values
b. The answer consists of a subset of items such that one value is

minimized/maximized and the other value adds up to a certain amount k
c. The items cannot be split (i.e., non-fractional items)

Abstraction

• Abstraction is the ability to overlook the unimportant details of a
problem and focus only on the important core parts of it

• By doing this, we can transform the problem into something else,
which we have a solution for

Abstraction

• Assume you get as input a product’s expiry date (day, month, and
year, all in numbers). Is the product expired?

• Compare the expiry date and today’s date, determine which one comes first
• Same as Quiz 1, oldest of two persons!

The Compounding Process

• Assume you want to deposit $100 in a bank that offers a 10% interest
rate that is compounded annually

• What would be your total amount of money after 3 years?

Year Your Money

0 $100

1 $100 + ($100×0.1) = $100 × (1+0.1) = $100 × 1.1 = $110

2 $110 × 1.1 = ($100 × 1.1) × 1.1 = $100 × 1.12 = $121

3 $121 × 1.1 = (($100 × 1.1) × 1.1) × 1.1 = $100 × 1.13 = 133.1

Year Your Money

0 $100

1 $100 + ($100×0.1) = $100 × (1+0.1) = $100 × 1.1 = $110

2 $110 × 1.1 = ($100 × 1.1) × 1.1 = $100 × 1.12 = $121

3 $121 × 1.1 = (($100 × 1.1) × 1.1) × 1.1 = $100 × 1.13 = 133.1

Year Your Money

0 $100

1 $100 + ($100×0.1) = $100 × (1+0.1) = $100 × 1.1 = $110

2 $110 × 1.1 = ($100 × 1.1) × 1.1 = $100 × 1.12 = $121

3 $121 × 1.1 = (($100 × 1.1) × 1.1) × 1.1 = $100 × 1.13 = 133.1

Interest is
accrued on

interest; hence,
the name

compounded!

The Compounding Process

• Assume you want to deposit $100 in a bank that offers a 10% interest
rate that is compounded annually

• What would be your total amount of money after 3 years?

Year Your Money

0 $100

1 $100 + ($100×0.1) = $100 × (1+0.1) = $100 × 1.1 = $110

2 $110 × 1.1 = ($100 × 1.1) × 1.1 = $100 × 1.12 = $121

3 $121 × 1.1 = (($100 × 1.1) × 1.1) × 1.1 = $100 × 1.13 = 133.1

Year Your Money

0 $100

1 $100 + ($100×0.1) = $100 × (1+0.1) = $100 × 1.1 = $110

2 $110 × 1.1 = ($100 × 1.1) × 1.1 = $100 × 1.12 = $121

3 $121 × 1.1 = (($100 × 1.1) × 1.1) × 1.1 = $100 × 1.13 = 133.1

Year Your Money

0 $100

1 $100 + ($100×0.1) = $100 × (1+0.1) = $100 × 1.1 = $110

2 $110 × 1.1 = ($100 × 1.1) × 1.1 = $100 × 1.12 = $121

3 $121 × 1.1 = (($100 × 1.1) × 1.1) × 1.1 = $100 × 1.13 = 133.1

The Compounding Process

• In general, your initial capital will become:
• a = a×(1+i/100)n, where:

• a is your initial capital
• i is the interest rate as a percentage
• And, n is the number of years

1. Input: a (initial capital)
2. Input: i (interest rate – in percentage)
3. Input: n (number of years)
4. j = 1 + i/100
5. c = a × jn

6. Output (the answer): c

The Compounding Algorithm: Version 1

a = a×(1+i/100)n

1. Input: a (initial capital)
2. Input: i (interest rate – in percentage)
3. Input: n (number of years)
4. c = a×(1+i/100)n

5. Output (the answer): c

The Compounding Algorithm: Version 2

a = a×(1+i/100)n

• Let us translate the compounding algorithm into a program using
Python

• But, what is a program?
• A program is just a sequence of instructions telling the computer what to do
• These instructions need to be written in a language that computers can understand
• This kind of a language is referred to as a programming language
• Python is an example of a programming language

• Every structure in a programming language has an exact form (i.e.,
syntax) and a precise meaning (i.e., semantic)

Moving to Programming…

• A special type of software known as a Integrated Development
Environment (IDE) simplifies the process of writing (or developing)
programs

• In this course, we will use an IDE named Spyder
• It comes with Anaconda, a free and open-source distribution of Python for

scientific computing (data science, machine learning applications, etc.,)
• Let us download Anaconda and familiarize ourselves with Spyder

Integrated Development Environment

• Here is a very simple Python program:

• print(…) is a built-in function that allows displaying information on screen
• When you call (or invoke) the print function, the parameters in the

parentheses tell the function what to print
• There is only one parameter passed to the print function here, which is either

a textual data (or what is denoted as a string like “Hello”), or integer (e.g., 3),
or float (e.g., 2.3)

print("Hello")
print("Programming is fun!")
print(3)
print(2.3)

Writing Python Programs

• We can also define variables and assign them values

x = 2
x = 2.3
print(x)

Simple Assignment Statements

a. x is a variable and 2 is its value

b. x can be assigned different values;
hence, it is called a variable

2.3

Output:

• In Python, values may end up anywhere in computer memory, and
variables are used to refer to them

x = 2
x = 2.3
print(x)

Simple Assignment Statements

2

Before
x = 2.3

2

After

x x

2.3

What will
happen to
value 2?

• Interestingly, as a Python programmer you do not have to worry about
computer memory getting filled up with old values when new values
are assigned to variables

• Python will automatically clear old
values out of memory in a process
known as garbage collection

Garbage Collection

2

After

x

2.3

X
Memory location
will be automatically
reclaimed by the
garbage collector

• Python has some rules about how variable names can be written
• Every variable name must begin with a letter or underscore, which may be

followed by any sequence of letters, digits, or underscores

x1 = 10
x2 = 20
y_effect = 1.5
celsius = 32
2celsius = 2

Variable Names

SyntaxError: invalid syntax A varilable name cannot start with a digit

• Python has some rules about how variable names can be written
• Variable names are also case-sensitive

x = 10
X = 5.7
print(x)
print(X)

Variable Names

10
5.7

Output:

• Python has some rules about how variable names can be written
• Some names are part of Python itself (they are called reserved words or

keywords) and cannot be used by programmers as ordinary names

Variable Names

False class finally is return
None continue for lambda try
True def from nonlocal while
and del global not with
as elif if or yield
assert else import pass
break except in raise

Python Keywords

• Python has some rules about how variable names can be written
• Some names are part of Python itself (they are called reserved words or

keywords) and cannot be used by programmers as ordinary names

Variable Names

for = 4An example…

SyntaxError: invalid syntax A variable name cannot be a Python keyword

• You can produce new data (numeric or text) values in your program
using expressions

Expressions

x = 2 + 3
print(x)
print(5 * 7)
print("5" + "7")

This is an expression that uses the
addition operator

This is another expression that uses the
multiplication operator

This is yet another expression that uses the
addition operator but to concatenate (or glue)
strings together

• You can produce new data (numeric, text, …) values in your program
using expressions

Expressions

x = 6
y = 2
print(x - y)
print(x/y)
print(x//y)

print(x*y)
print(x**y)
print(x%y)
print(abs(-x))

Yet another
example…

Another
example…

Expressions: Summary of Operators

Operator Operation
+ Addition
- Subtraction
* Multiplication
/ Float Division

** Exponentiation
abs() Absolute Value

// Integer Division
% Modulo

Python Built-In Numeric Operations

Functions

• Python allows putting a sequence of instructions (or statements)
together to create a brand-new command or function

def hello():
print("Hello")
print("Programming is fun!")

These indentations are necessary to
indicate that these two statements
belong to the same scope or
block of code, which belongs
to this function

• Python allows putting a sequence of instructions (or statements)
together to create a brand-new command or function

a. The first indentation is mandatory
(not providing it will cause a
syntax error)

b. If the second indentation is not provided, print(“Programming is fun!”) will
not be considered part of the hello() function, but rather an independent
statement

Functions

def hello():
print("Hello")
print("Programming is fun!")

• After defining a function, you can call (or invoke) it by typing its name
followed by parentheses

Calling Functions

def hello():
print("Hello")
print("Programming is fun!")

hello()

a. This is how we invoke our
defined function hello()

b. Notice that the two print
statements (which form one
code block) were executed
in sequence

Hello
Programming is fun!

Output:

The Compounding Algorithm in Python

def compoundInterest(a, i, n):
c = a * (1+i/100) ** n
print(c)

compoundInterest(100, 10, 4)

146.41000000000008

Output:

• Now that you know how to translate algorithms into code, translate
the following sequence of instructions or steps into Python:

1. Start with the number 7
2. Multiply by the current month
3. Subtract 1
4. Multiply by 13
5. Add today’s day
6. Add 3
7. Multiply by 11
8. Subtract the current month
9. Subtract the current day
10. Divide by 10
11. Add 11
12. Divide by 100

Exercise

Next Class…

• Recitation + Quiz

	15-110: Principles of Computing
	Today…
	Slide Number 3
	Abstraction
	Abstraction
	Abstraction
	Abstraction
	Abstraction
	Abstraction
	Abstraction
	Abstraction
	The Compounding Process
	The Compounding Process
	The Compounding Process
	The Compounding Algorithm: Version 1
	The Compounding Algorithm: Version 2
	Moving to Programming…
	Integrated Development Environment
	Writing Python Programs
	Simple Assignment Statements
	Simple Assignment Statements
	Garbage Collection
	Variable Names
	Variable Names
	Variable Names
	Variable Names
	Expressions
	Expressions
	Expressions: Summary of Operators
	Functions
	Functions
	Calling Functions
	The Compounding Algorithm in Python
	Exercise
	Next Class…

