
18-strings-II

November 3, 2020

1 Functions on Strings

Python is a language particularly useful when it comes to string processing [1]. This is because
it provides a variety of useful functions for string processing and transformation. In this lecture
we will look at a few of them that will make our lives much easier when programming. To know
more about other string functions available in python, check the documentation here.

All the functions we will see are part of the string class, which means they are called using the dot
. notation: if s is a variable containing a string, and f() is a string function, we call f on s like this:
s.f(). Of course, depending on the function, there might be arguments that need to be passed to
the function.

Observe that none of the functions below modify the string.

[1] As a consequence, it is also a great language for file processing, since files are, most of the
times, nothing more than really long strings.

1.1 split

The split() function splits the string into parts. If we pass no arguments to it, it will split the
string at whitespaces and linebreaks, and return a list of the parts. Alternatively, we can pass to
it a string argument indicating what it should split on. For example, if s = "hello,world" then
calling s.split(",") will return the list ["hello", "world"].

Another related function that might be useful is splitlines(), which will return a list with all the
lines of the string.

[1]: s = """Philosophy is the study of general and fundamental questions
about existence, knowledge, values, reason, mind, and language.
Such questions are often posed as problems to be studied or resolved.
Philosophical methods include questioning, critical discussion,
rational argument, and systematic presentation. Classic philosophical
questions include: Is it possible to know anything and to prove it?
What is most real? Philosophers also pose more practical and concrete
questions such as: Is there a best way to live? Is it better to be
just or unjust (if one can get away with it)? Do humans have free will?"""

sentences = s.split(".") # Splits at final stops
words = s.split() # Splits at blank spaces and linebreaks

1

https://docs.python.org/3/library/stdtypes.html#text-sequence-type-str

lines = s.split("\n") # Same as s.splitLines()

print(sentences)
print(words)
print(lines)

['Philosophy is the study of general and fundamental questions\nabout existence,
knowledge, values, reason, mind, and language', ' \nSuch questions are often
posed as problems to be studied or resolved', '\nPhilosophical methods include
questioning, critical discussion, \nrational argument, and systematic
presentation', ' Classic philosophical \nquestions include: Is it possible to
know anything and to prove it?\nWhat is most real? Philosophers also pose more
practical and concrete \nquestions such as: Is there a best way to live? Is it
better to be \njust or unjust (if one can get away with it)? Do humans have free
will?']
['Philosophy', 'is', 'the', 'study', 'of', 'general', 'and', 'fundamental',
'questions', 'about', 'existence,', 'knowledge,', 'values,', 'reason,', 'mind,',
'and', 'language.', 'Such', 'questions', 'are', 'often', 'posed', 'as',
'problems', 'to', 'be', 'studied', 'or', 'resolved.', 'Philosophical',
'methods', 'include', 'questioning,', 'critical', 'discussion,', 'rational',
'argument,', 'and', 'systematic', 'presentation.', 'Classic', 'philosophical',
'questions', 'include:', 'Is', 'it', 'possible', 'to', 'know', 'anything',
'and', 'to', 'prove', 'it?', 'What', 'is', 'most', 'real?', 'Philosophers',
'also', 'pose', 'more', 'practical', 'and', 'concrete', 'questions', 'such',
'as:', 'Is', 'there', 'a', 'best', 'way', 'to', 'live?', 'Is', 'it', 'better',
'to', 'be', 'just', 'or', 'unjust', '(if', 'one', 'can', 'get', 'away', 'with',
'it)?', 'Do', 'humans', 'have', 'free', 'will?']
['Philosophy is the study of general and fundamental questions', 'about
existence, knowledge, values, reason, mind, and language. ', 'Such questions are
often posed as problems to be studied or resolved.', 'Philosophical methods
include questioning, critical discussion, ', 'rational argument, and systematic
presentation. Classic philosophical ', 'questions include: Is it possible to
know anything and to prove it?', 'What is most real? Philosophers also pose more
practical and concrete ', 'questions such as: Is there a best way to live? Is it
better to be ', 'just or unjust (if one can get away with it)? Do humans have
free will?']

1.2 strip

The strip() function removes spurious content from the beginning and end of a string. When
called without arguments, it removes whitespaces.

[2]: s = """ Hello world

"""

s_clean = s.strip()

2

print(s_clean)

Hello world

When called with a string as an argument, it removes all characters that are in that string. Intu-
itively, if we use r as an argument, as in s.strip(r), then r acts like a set of characters that must
be removed from the beginning or end of s. Note that, since it is a set, they will be removed in any
order. As soon as a character that is not in r is encountered, the stripping stops.

[3]: s = "www.anAwesomeSite.com"
s_stripped = s.strip("w.com") # Note that the inner w and m are not removed
print(s_stripped)

anAwesomeSite

1.3 lower & upper

The lower and upper functions return the string where its aphabetic characters are replaced by
their lower- or upper-case versions, respectively. All other characters remain the same.

[4]: s = "1984 is a dystopian novel by English novelist George Orwell."
sU = s.upper()
print(sU)

1984 IS A DYSTOPIAN NOVEL BY ENGLISH NOVELIST GEORGE ORWELL.

[5]: sl = s.lower()
print(sl)

1984 is a dystopian novel by english novelist george orwell.

1.4 replace

The replace function replaces substrings in a string (I bet you did not see that one coming!)

[6]: s = "These are the times."
s1 = s.replace("the", "interesting") # Note that capitalization matters!
s2 = s1.replace(".", "!")
print(s2)

These are interesting times!

Alternatively, we can pass an integer n as the third argument of replace, and it will only replace
the first n occurrences of the substring.

[7]: s = "These are the times to stay together."
s1 = s.replace("the", "interesting", 1) # Replaces only the first 'the' (and␣

↪→leaves the one in togeTHEr alone)
print(s1)

3

These are interesting times to stay together.

1.5 startswith & endswith

The functions startswith(prefix) and endswith(suffix) return a boolean indicating whether
the string starts with prefix or ends with suffix.

[8]: s = "In the beginning it seemed that it would never end"
sw = s.startswith("In")
ew = s.endswith("ever end")
print("Starts with 'In'?", sw)
print("Ends with 'ever end'?", ew)

Starts with 'In'? True
Ends with 'ever end'? True

1.6 find

The function find(ss) returns the first index where substring ss occurs. Alternatively, you can
use find(ss,start,end), where start and end are integers indicating the slice where ss should be
searched for. If you want to search until the end of the string, you can ommit end.

[9]: s = "ACTGTCTGATGTACCCT"

tg_first = s.find("TG")
print("First occurence of TG:", tg_first)

Starting to search from the next position where we found the first occurrence
tg_second = s.find("TG", tg_first+2)
print("Second occurence of TG:", tg_second)

First occurence of TG: 2
Second occurence of TG: 6

If the substring ss does not occur in s, the function find returns -1. Another function which
serves the same purpose is index (like the one for lists). The only difference is that index raises a
ValueError if the substring is not found.

1.7 Exercise 1: count occurrences

The function count(ss) returns the number of times the substring ss occurs in a string, however,
it only counts non-overlapping occurrences. That means that, for example, "AAA".count("AA") will
return 1. Implement the function countOverlapping(s, ss) that counts the number of times ss
occurrs in s considering overlapping occurrences.

For example, countOverlapping("AAA", "AA") should return 2.

[10]: def countOverlapping(s, ss):
return 42

4

1.8 Exercise 2: fixing messages

People have become sloppy when it comes to typing on the internet. There are a lot of abbrevi-
ations, capitalization is not respected, nor is punctuation. Your job in this task is to fix internet
messages. Implement the function fix(M) that takes a message M as a string for the input, and
returns another message where the content of M is the same, but the following is fixed:

• There is a period at the end of the message.
• All punctutations (.,!?) must be followed by one space.
• The first letter of each sentence is capitalized.
• The following abbreviations are spelled out in full:

– u -> you
– ofc -> of course
– thru -> through
– ppl -> people
– 2 -> too
– 8 -> ate

For example, let

M1 = "it is already halfway thru the semester and u have no idea what is going on?
rest assured u are not alone!a lot of ppl go thru the same desperation ofc.What u
need to do is take a step back and figure out what u don't understand and why...it
is not 2 l8 to recover. U can do this"

then fix(M1) should return:

"It is already halfway through the semester and you have no idea what is going on?
Rest assured you are not alone! A lot of people go through the same desperation
of course. What you need to do is take a step back and figure out what you don't
understand and why... It is not too late to recover. You can do this."

You may find it easier to split this task into functions, one for each fix, and use them to implement
fix(M).

[11]: def fix(M):
return ""

5

	Functions on Strings
	split
	strip
	lower & upper
	replace
	startswith & endswith
	find
	Exercise 1: count occurrences
	Exercise 2: fixing messages

