
Chapter 13

Algorithm Analysis and Design

If you have worked your way through to this point in the book, you are well on the way to becoming a
programmer. Way back in Chapter 1, I discussed the relationship between programming and the study of
computer science. Now that you have some programming skills, you are ready to start considering the
broader issues in the field. Here we will take up one of the central issues, namely the design and analysis of
algorithms.

13.1 Searching

Let’s begin by considering a very common and well-studied programming problem: search. Search is the
process of looking for a particular value in a collection. For example, a program that maintains the member-
ship list for a club might need to look up the information about a particular member. This involves some form
of search process.

13.1.1 A Simple Searching Problem

To make the discussion of searching algorithms as simple as possible, let’s boil the problem down to its
essential essence. Here is the specification of a simple searching function:

def search(x, nums):
nums is a list of numbers and x is a number
RETURNS the position in the list where x occurs or -1 if
x is not in the list.

Here are a couple interactive examples that illustrate its behavior:

>>> search(4, [3, 1, 4, 2, 5])
2
>>> search(7, [3, 1, 4, 2, 5])
-1

In the first example, the function returns the index where 4 appears in the list. In the second example, the
return value -1 indicates that 7 is not in the list.

You may recall from our discussion of list operations that Python actually provides a number of built-in
search-related methods. For example, we can test to see if a value appears in a sequence using in.

if x in nums:
do something

If we want to know the position of x in a list, the index method fills the bill nicely.

225

226 CHAPTER 13. ALGORITHM ANALYSIS AND DESIGN

>>> nums = [3,1,4,2,5]
>>> nums.index(4)
2

In fact, the only difference between our search function and index is that the latter raises an exception if
the target value does not appear in the list. We could implement the search function using index by simply
catching the exception and returning -1 for that case.

def search(x, nums):
try:

return nums.index(x)
except:

return -1

This approach begs the question, however. The real issue is how does Python actually search the list? What
is the algorithm?

13.1.2 Strategy 1: Linear Search

Let’s try our hand at developing a search algorithm using a simple “be the computer” strategy. Suppose that
I gave you a page full of numbers in no particular order and asked whether the number 13 is in the list. How
would you solve this problem? If you are like most people, you would simply scan down the list comparing
each value to 13. When you see 13 in the list, you quit and tell me that you found it. If you get to the very
end of the list without seeing 13, then you tell me it’s not there.

This strategy is called a linear search. You are searching through the list of items one by one until the
target value is found. This algorithm translates directly into simple code.

def search(x, nums):
for i in range(len(nums)):

if nums[i] == x: # item found, return the index value
return i

return -1 # loop finished, item was not in list

This algorithm was not hard to develop, and it will work very nicely for modest-sized lists. For an
unordered list, this algorithm is as good as any. The Python in and index operators both implement linear
searching algorithms.

If we have a very large collection of data, we might want to organize it in some way so that we don’t have
to look at every single item to determine where, or if, a particular value appears in the list. Suppose that the
list is stored in sorted order (lowest to highest). As soon as we encounter a value that is greater than the target
value, we can quit the linear search without looking at the rest of the list. On average, that saves us about half
of the work. But, if the list is sorted, we can do even better than this.

13.1.3 Strategy 2: Binary Search

When a list is ordered, there is a much better searching strategy, one that you probably already know. Have
you ever played the number guessing game? I pick a number between 1 and 100, and you try to guess what
it is. Each time you guess, I will tell you if your guess is correct, too high, or too low. What is your stategy?

If you play this game with a very young child, they might well adopt a strategy of simply guessing
numbers at random. An older child might employ a systematic approach corresponding to linear search,
guessing 1 � 2 � 3 � 4 � � � � until the mystery value is found.

Of course, virtually any adult will first guess 50. If told that the number is higher, then the range of
possible values is 50–100. The next logical guess is 75. Each time we guess the middle of the remaining
range to try to narrow down the possible range. This strategy is called a binary search. Binary means two,
and at each step, we are dividing the possible range into two parts.

We can employ a binary search strategy to look through a sorted list. The basic idea is that we use two
variables to keep track of the endpoints of the range in the list where the item could be. Initially, the target

13.1. SEARCHING 227

could be anywhere in the list, so we start with variables low and high set to the first and last positions of
the list, respectively.

The heart of the algorithm is a loop that looks at the item in the middle of the remaining range to compare
it to x. If x is smaller than the middle item, then we move top, so that the search is narrowed to the lower
half. If x is larger, then we move low, and the search is narrowed to the upper half. The loop terminates
when x is found or there are no longer any more places to look (i.e., low > high). Here is the code.

def search(x, nums):
low = 0
high = len(nums) - 1
while low <= high: # There is still a range to search

mid = (low + high) / 2 # position of middle item
item = nums[mid]
if x == item : # Found it! Return the index

return mid
elif x < item: # x is in lower half of range

high = mid - 1 # move top marker down
else: # x is in upper half

low = mid + 1 # move bottom marker up
return -1 # no range left to search, x is not there

This algorithm is quite a bit more sophisticated than the simple linear search. You might want to trace
through a couple of example searches to convince yourself that it actually works.

13.1.4 Comparing Algorithms

So far, we have developed two solutions to our simple searching problem. Which one is better? Well, that
depends on what exactly we mean by better. The linear search algorithm is much easier to understand and
implement. On the other hand, we expect that the binary seach is more efficient, because it doesn’t have to
look at every value in the list. Intuitively, then, we might expect the linear search to be a better choice for
small lists and binary search a better choice for larger lists. How could we actually confirm such intuitions?

One approach would be to do an empirical test. We could simply code up both algorithms and try them
out on various sized lists to see how long the search takes. These algorithms are both quite short, so it
would not be difficult to run a few experiments. When I tested the algorithms on my particular computer (a
somewhat dated laptop), linear search was faster for lists of length 10 or less, and there was no significant
difference in the range of length 10–1000. After that, binary search was a clear winner. For a list of a million
elements, linear search averaged 2.5 seconds to find a random value, whereas binary search averaged only
0.0003 seconds.

The empirical analysis has confirmed our intuition, but these are results from one particular machine
under specific circumstances (amount of memory, processor speed, current load, etc.). How can we be sure
that the results will always be the same?

Another approach is to analyze our algorithms abstractly to see how efficient they are. Other factors being
equal, we expect the algorithm with the fewest number of “steps” to be the more efficient. But how do we
count the number of steps? For example, the number of times that either algorithm goes through its main loop
will depend on the particular inputs. We have already guessed that the advantage of binary search increases
as the size of the list increases.

Computer scientists attack these problems by analyzing the number of steps that an algorithm will take
relative to the size or difficulty of the specific problem instance being solved. For searching, the difficulty is
determined by the size of the collection. Obviously, it takes more steps to find a number in a collection of a
million than it does in a collection of ten. The pertinent question is how many steps are needed to find a value
in a list of size n. We are particularly interested in what happens as n gets very large.

Let’s consider the linear search first. If we have a list of ten items, the most work our algorithm might
have to do is to look at each item in turn. The loop will iterate at most ten times. Suppose the list is twice as
big. Then we might have to look at twice as many items. If the list is three times as large, it will take three

228 CHAPTER 13. ALGORITHM ANALYSIS AND DESIGN

times as long, etc. In general, the amount of time required is linearly related to the size of the list n. This is
what computer scientists call a linear time algorithm. Now you really know why it’s called a linear search.

What about the binary search? Let’s start by considering a concrete example. Suppose the list contains
sixteen items. Each time through the loop, the remaining range is cut in half. After one pass, there are eight
items left to consider. The next time through there will be four, then two, and finally one. How many times
will the loop execute? It depends on how many times we can halve the range before running out of data. This
table might help you to sort things out:

List size Halvings
1 0
2 1
4 2
8 3

16 4

Can you see the pattern here? Each extra iteration of the loop doubles the size of the list. If the binary
search loops i times, it can find a single value in a list of size 2i. Each time through the loop, it looks at
one value (the middle) in the list. To see how many items are examined in a list of size n, we need to solve
this relationship: n � 2i for i. In this formula, i is just an exponent with a base of 2. Using the appropriate
logarithm gives us this relationship: i � log2 n. If you are not entirely comfortable with logarithms, just
remember that this value is the number of times that a collection of size n can be cut in half.

OK, so what does this bit of math tell us? Binary search is an example of a log time algorithm. The
amount of time it takes to solve a given problem grows as the log of the problem size. In the case of binary
search, each additional iteration doubles the size of the problem that we can solve.

You might not appreciate just how efficient binary search really is. Let me try to put it in perspective.
Suppose you have a New York City phone book with, say, twelve million names listed in alphabetical order.
You walk up to a typical New Yorker on the street and make the following proposition (assuming their number
is listed): I’m going to try guessing your name. Each time I guess a name, you tell me if your name comes
alphabetically before or after the name I guess. How many guesses will you need?

Our analysis above shows the answer to this question is log212 � 000 � 000. If you don’t have a calculator
handy, here is a quick way to estimate the result. 210 � 1024 or roughly 1000, and 1000x1000 � 1 � 000 � 000.
That means that 210x210 � 220 � 1 � 000 � 000. That is, 220 is approximately one million. So, searching a
million items requires only 20 guesses. Continuting on, we need 21 guesses for two million, 22 for four
million, 23 for eight million, and 24 guesses to search among sixteen million names. We can figure out the
name of a total stranger in New York City using only 24 guesses! By comparison, a linear search would
require (on average) 6 million guesses. Binary search is a phenomenally good algorithm!

I said earlier that Python uses a linear search algorithm to implement its built-in searching methods. If a
binary search is so much better, why doesn’t Python use it? The reason is that the binary search is less general;
in order to work, the list must be in order. If you want to use binary search on an unordered list, the first thing
you have to do is put it in order or sort it. This is another well-studied problem in computer science, and
one that we should look at. Before we turn to sorting, however, we need to generalize the algorithm design
technique that we used to develop the binary search.

13.2 Recursive Problem-Solving

Remember the basic idea behind the binary search algorithm was to sucessively divide the problem in half.
This is sometimes referred to as a “divide and conquer” approach to algorithm design, and it often leads to
very efficient algorithms.

One interesting aspect of divide and conquer alorithms is that the original problem divides into subprob-
lems that are just smaller versions of the original. To see what I mean, think about the binary search again.
Initially, the range to search is the entire list. Our first step is to look at the middle item in the list. Should the
middle item turn out to be the target, then we are finished. If it is not the target, we continue by performing
binary search on either the top-half or the bottom half of the list.

Using this insight, we might express the binary search algorithm in another way.

13.2. RECURSIVE PROBLEM-SOLVING 229

Algorithm: binarySearch -- search for x in range nums[low] to nums[high]

mid = (low + high) / 2
if low > high

x is not in nums
elif x < nums[mid]

perform binary search for x in range nums[low] to nums[mid-1]
else

perform binary search for x in range nums[mid+1] to nums[high]

Rather than using a loop, this defintion of the binary search seems to refer to itself. What is going on here?
Can we actually make sense of such a thing?

13.2.1 Recursive Definitions

A description of something that refers to itself is called a recursive definition. In our last formulation, the
binary search algorithm makes use of its own description. A “call” to binary search “recurs” inside of the
definition—hence, the label recursive definition.

At first glance, you might think recursive definitions are just nonsense. Surely you have had a teacher
who insisted that you can’t use a word inside of its own definition? That’s called a circular definition and is
usually not worth much credit on an exam.

In mathematics, however, certain recursive definitions are used all the time. As long as we excercise some
care in the formulation and use of recursive definitions, they can be quite handy and surprisingly powerful.
Let’s look at a simple example to gain some insight and then apply those ideas to binary search.

The classic recursive example in mathematics is the definition of factorial. Back in Chapter 3, we defined
the factorial of a value like this:

n! � n
�
n � 1 � �

n � 2 � � � �

�
1 �

For example, we can compute
5! � 5

�
4 � �

3 � �
2 � �

1 �
Recall that we implemented a program to compute factorials using a simple loop that accumulates the factorial
product.

Looking at the calculation of 5!, you will notice something interesting. If we remove the 5 from the front,
what remains is a calculation of 4!. In general, n! � n

�
n � 1 � !. In fact, this relation gives us another way of

expressing what is meant by factorial in general. Here is a recursive definition:

n! �
�

1 if n � 0
n

�
n � 1 � ! otherwise

This definition says that the factorial of 0 is, by definition, 1, while the factorial of any other number is defined
to be that number times the factorial of one less than that number.

Even though this definition is recursive, it is not circular. In fact, it provides a very simple method of
calculating a factorial. Consider the value of 4!. By definition we have

4! � 4
�
4 � 1 � ! � 4

�
3! �

But what is 3!? To find out, we apply the definition again.

4! � 4
�
3! � � 4 � �

3 � �
3 � 1 � ! � � 4

�
3 � �

2! �
Now, of course, we have to expand 2!, which requires 1!, which requires 0!. Since 0! is simply 1, that’s the
end of it.

4! � 4
�
3! � � 4

�
3 � �

2! � � 4
�
3 � �

2 � �
1! � � 4

�
3 � �

2 � �
1 � �

0! � � 4
�
3 � �

2 � �
1 � �

1 � � 24

You can see that the recursive definition is not circular because each application causes us to request the
factorial of a smaller number. Eventually we get down to 0, which doesn’t require another application of the
definition. This is called a base case for the recursion. When the recursion bottoms out, we get a closed
expression that can be directly computed. All good recursive definitions have these key characteristics:

230 CHAPTER 13. ALGORITHM ANALYSIS AND DESIGN

1. There are one or more base cases for which no recursion is required.

2. When the definition is recursively applied, it is always applied to a smaller case.

3. All chains of recursion eventually end up at one of the base cases.

13.2.2 Recursive Functions

You already know that the factorial can be computed using a loop with an accumulator. That implementation
has a natural correspondence to the original definition of factorial. Can we also implement a version of
factorial that follows the recursive definition?

If we write factorial as a separate function, the recursive definition translates directly into code.

def fact(n):
if n == 0:

return 1L
else:

return n * fact(n-1)

Do you see how the definition that refers to itself turns into a function that calls itself? The function first
checks to see if we are at a the base case n == 0 and, if so, returns 1 (note the use of a long int constant
since factorials grow rapidly). If we are not yet at the base case, the function returns the result of multiplying
n by the factorial of n-1. The latter is calculated by a recursive call to fact(n-1).

I think you will agree that this is a reasonable translation of the recursive definition. The really cool part
is that it actually works! We can use this recursive function to compute factorial values.

>>> from recfact import fact
>>> fact(4)
24
>>> fact(10)
3628800

Some beginning programmers are surprised by this result, but it follows naturally from the semantics for
functions that we discussed way back in Chapter 6. Remember that each call to a function starts that function
anew. That means it gets its own copy of any local values, including the values of the parameters. Figure 13.1
shows the sequence of recursive calls that computes 2!. Note especially how each return value is multiplied
by a value of n appropriate for each function invocation. The values of n are stored on the way down the
chain and then used on the way back up as the function calls return.

fact(2) n = 1

1
1n = 0

2

n = 2
def fact(n):
 if n == 0:
 return 1
 else:
 return n * fact(n−1)

n:

def fact(n):
 if n == 0:
 return 1
 else:
 return n * fact(n−1)

n:2 1

def fact(n):
 if n == 0:
 return 1
 else:
 return n * fact(n−1)

n: 0

Figure 13.1: Recursive computation of 2!

13.2.3 Recursive Search

Now that we have a technique for implementing recursive definitions, we are ready to go back and look again
at binary search as a recursive process. The basic idea was to look at the middle value and then recursively
search either the lower half or the upper half of the array. The base cases for the recursion are the conditions
when we can stop, namely when the target value is found, or we run out of places to look. The recursive calls

13.3. SORTING ALGORITHMS 231

will cut the size of the problem in half each time. In order to do this, we need to specify the range of locations
in the list that are still “in play” for each recursive call. We can do this by passing the values of low and
high along with the list. Each invocation will search the list between the low and high indexes.

Here is a direct implementation of the recursive algorithm using these ideas:

def recBinSearch(x, nums, low, high):
if low > high: # No place left to look, return -1

return -1
mid = (low + high) / 2
item = nums[mid]
if item == x: # Found it! Return the index

return mid
elif x < item: # Look in lower half

return recBinSearch(x, nums, low, mid-1)
else: # Look in upper half

return recBinSearch(x, nums, mid+1, high)

We can then implement our original search function using a suitable call to the recursive binary search, telling
it to start the search between 0 and len(nums)-1

def search(x, nums):
return recBinSearch(x, nums, 0, len(nums)-1)

Of course, as in the case of factorial, we already implemented this algorithm using a loop, and there
is no compelling reason to use a recursive implementation. In fact, the looping version is probably a bit
faster because calling functions is generally slower than iterating a loop. The recursive version, however,
makes the divide-and-conquer structure of binary search much more obvious. Below, we will see examples
where recursive divide-and-conquer approaches provide a natural solution to some problems where loops are
awkward.

13.3 Sorting Algorithms

The sorting problem provides a nice testbed for the algorithm design techniques we have been discussing.
Recall, the basic sorting problem is to take a list and rearrange it so that the values are in increasing (actually,
nondecreasing) order.

13.3.1 Naive Sorting: Selection Sort

Let’s start with a simple “be the computer” approach to sorting. Suppose you have a stack of index cards,
each with a number on it. The stack has been shuffled, and you need to put the cards back in order. How
would you accomplish this task?

There are any number of good systematic approaches. One simple method is to look through the deck
to find the smallest value and then place that value at the front of the stack (or perhaps in a separate stack).
Then you could go through and find the smallest of the remaining cards and put it next in line, etc. Of course,
this means that you’ll also need an algorithm for finding the smallest remaining value. You can use the same
approach we used for finding the max of a list (see Chapter 6). As you go through, you keep track of the
smallest value seen so far, updating that value whenever you find a smaller one.

The algorithm I just described is called selection sort. Basically, the algorithm consists of a loop and
each time through the loop, we select the smallest of the remaining elements and move it into its proper
position. Applying this idea to a list, we proceed by finding the smallest value in the list and putting it into
the 0th position. Then we find the smallest remaining value (from positions 1–(n-1)) and put it in position 1.
Next the smallest value from positions 2–(n-1) goes into position 2, etc. When we get to the end of the list,
everything will be in its proper place.

There is one subtlety in implementing this algorithm. When we place a value into its proper position, we
need to make sure that we do not accidently lose the value that was originally stored in that position. For
example, if the smallest item is in position 10, moving it into position 0 involves an assignment.

232 CHAPTER 13. ALGORITHM ANALYSIS AND DESIGN

nums[0] = nums[10]

But this wipes out the value currently in nums[0]; it really needs to be moved to another location in the list.
A simple way to save the value is to swap it with the one that we are moving. Using simultaneous assignment,
the statement

nums[0], nums[10] = nums[10], nums[0]

places the value from position 10 at the front of the list, but preserves the original first value by stashing it
into location 10.

Using this idea, it is a simple matter to write a selection sort in Python. I will use a variable called
bottom to keep track of which position in the list we are currently filling, and the variable mp will be used
to track the location of the smallest remaining value. The comments in this code explain this implementation
of selection sort:

def selSort(nums):
sort nums into ascending order
n = len(nums)

For each position in the list (except the very last)
for bottom in range(n-1):

find the smallest item in nums[bottom]..nums[n-1]

mp = bottom # initially bottom is smallest so far
for i in range(bottom+1,n): # look at each position

if nums[i] < nums[mp]: # this one is smaller
mp = i # remember its index

swap smallest item to the bottom
lst[bottom], lst[mp] = lst[mp], lst[bottom]

One thing to notice about this algorithm is the accumulator for finding the minimum value. Rather than
actually storing the minimum seen so far, mp just remembers the position of the minimum. A new value is
tested by comparing the item in position i to the item in position mp. You should also notice that bottom
stops at the second to last item in the list. Once all of the items up to the last have been put in the proper
place, the last item has to be the largest, so there is no need to bother looking at it.

The selection sort algorithm is easy to write and works well for moderate-sized lists, but it is not a very
efficient sorting algorithm. We’ll come back and analyze it after we’ve developed another algorithm.

13.3.2 Divide and Conquer: Merge Sort

As discussed above, one technique that often works for developing efficient algorithms is the divide-and-
conquer approach. Suppose a friend and I were working together trying to put our deck of cards in order. We
could divide the problem up by splitting the deck of cards in half with one of us sorting each of the halves.
Then we just need to figure out a way of combining the two sorted stacks.

The process of combining two sorted lists into a single sorted result is called merging. If you think about
it, merging is pretty simple. Since our two stacks are sorted, each has its smallest value on top. Whichever of
the top values is the smallest will be the first item in the merged list. Once the smaller value is removed, we
can look at the tops of the stacks again, and whichever top card is smaller will be the next item in the list. We
just continue this process of placing the smaller of the two top values into the big list until one of the stacks
runs out. At that point, we finish out the list with the cards from the remaining stack.

Here is a Python implementation of the merge process. In this code, lst1 and lst2 are the smaller lists
and lst3 is the larger list where the results are placed. In order for the merging process to work, the length
of lst3 must be equal to the sum of the lengths of lst1 and lst2. You should be able to follow this code
by studying the accompanying comments:

13.3. SORTING ALGORITHMS 233

def merge(lst1, lst2, lst3):
merge sorted lists lst1 and lst2 into lst3

these indexes keep track of current position in each list
i1, i2, i3 = 0, 0, 0 # all start at the front

n1, n2 = len(lst1), len(lst2)

Loop while both lst1 and lst2 have more items
while i1 < n1 and i2 < n2:

if lst1[i1] < lst2[i2]: # top of lst1 is smaller
lst3[i3] = lst1[i1] # copy it into current spot in lst3
i1 = i1 + 1

else: # top of lst2 is smaller
lst3[i3] = lst2[i2] # copy it into current spot in lst3
i2 = i2 + 1

i3 = i3 + 1 # item added to lst3, update position

Here either lst1 or lst2 is done. One of the following loops will
execute to finish up the merge.

Copy remaining items (if any) from lst1
while i1 < n1:

lst3[i3] = lst1[i1]
i1 = i1 + 1
i3 = i3 + 1

Copy remaining items (if any) from lst2
while i2 < n2:

lst3[i3] = lst2[i2]
i2 = i2 + 1
i3 = i3 + 1

With this merging algorithm in hand, it’s easy to see the general structure for a divide-and-conquer sorting
algorithm.

Algorithm: mergeSort nums

split nums into two halves
sort the first half
sort the second half
merge the two sorted halves back into nums

Looking at the steps in this algorithm, the first and last parts look easy. We can use slicing to split the list,
and we can use the merge function that we just wrote to put the pieces back together. But how do we sort
the two halves?

Well, let’s think about it. We are trying to sort a list, and our algorithm requires us to sort two smaller
lists. This sounds like a perfect place to use recursion. Maybe we can use mergeSort itself to sort the two
lists. Let’s go back to our recursion guidelines and see if we can develop a proper recursive algorithm.

In order for recursion to work, we need to find at least one base case that does not require a recursive
call, and we also have to make sure that recursive calls are always made on smaller versions of the original
problem. The recursion in our mergeSort will always occur on a list that is half as large as the original,
so the latter property is automatically met. Eventually, our lists will be very small, containing only a single
item. Fortunately, a list with just one item is already sorted! Voilá, we have a base case. When the length of
the list is less than 2, we do nothing, leaving the list unchanged.

Given our analysis, we can update the mergeSort algorithm to make it properly recursive.

234 CHAPTER 13. ALGORITHM ANALYSIS AND DESIGN

if len(nums) > 1:
split nums into two halves
mergeSort the first half
mergeSort the second half
merge the two sorted halves back into nums

We can translate this algorithm directly into Python code.

def mergeSort(nums):
Put items of nums in ascending order
n = len(nums)
Do nothing if nums contains 0 or 1 items
if n > 1:

split into two sublists
m = n / 2
nums1, nums2 = nums[:m], nums[m:]
recursively sort each piece
mergeSort(nums1)
mergeSort(nums2)
merge the sorted pieces back into original list
merge(nums1, nums2, nums)

I know this use of recursion may still seem a bit mysterious to you. You might try tracing this algorithm with
a small list (say eight elements), just to convince yourself that it really works. In general, though, tracing
through recursive algorithms can be tedious and often not very enlightening.

Recursion is closely related to mathematical induction, and it requires something of a leap of faith before
it becomes comfortable. As long as you follow the rules and make sure that every recursive chain of calls
eventually reaches a base case, your algorithms will work. You just have to trust and let go of the grungy
details. Let Python worry about that for you!

13.3.3 Comparing Sorts

Now that we have developed two sorting algorithms, which one should we use? Before we actually try them
out, let’s do some analysis. As in the searching problem, the difficulty of sorting a list depends on the size
of the list. We need to figure out how many steps each of our sorting algorithms requires as a function of the
size of the list to be sorted.

Take a look back at the algorithm for selection sort. Remember, this algorithm works by first finding the
smallest item, then finding the smallest of the remaining elements, and so on. Suppose we start with a list
of size n. In order to find the smallest value, the algorithm has to inspect each of the n items. The next time
around the outer loop, it has to find the smallest of the remaining n � 1 items. The third time around, there are
n � 2 items of interest. This process continues until there is only one item left to place. Thus, the total number
of iterations of the inner loop for the selection sort can be computed as the sum of a decreasing sequence.

n �
�
n � 1 � �

�
n � 2 � �

�
n � 3 � � � � � � 1

In other words, the time required by selection sort to sort a list of n items in proportional to the sum of the
first n whole numbers. There is a well-known formula for this sum, but even if you do not know the formula,
it is easy to derive. If you add the first and last numbers in the series you get n � 1. Adding the second and
second to last values gives

�
n � 1 � � 2 � n � 1. If you keep pairing up the values working from the outside

in, all of the pairs add to n � 1. Since there are n numbers, there must be n
2 pairs. That means the sum of all

the pairs is n � n �
1 �

2 .
You can see that the final formula contains an n2 term. That means that the number of steps in the

algorithm is proportional to the square of the size of the list. If the size of the list doubles, the number of
steps quadruples. If the size triples, it will take nine times as long to finish. Computer scientists call this a
quadratic or n-squared algorithm.

13.4. HARD PROBLEMS 235

Let’s see how that compares to the merge sort algorithm. In the case of merge sort, we divided a list into
two pieces and sorted the individual pieces before merging them together. The real work is done during the
merge process when the values in the sublists are copied back into the original list.

Figure 13.2 depicts the merging process to sort the list [3, 1, 4, 1, 5, 9, 2, 6]. The dashed
lines show how the original list is continually halved until each item is its own list with the values shown at
the bottom. The single-item lists are then merged back up into the two item lists to produce the values shown
in the second level. The merging process continues up the diagram to produce the final sorted version of the
list shown at the top.

1 1 2 3 4 5 6 9

1 1 3 4 2 5 6 9

1 3 1 4 5 9 2 6

3 1 4 1 5 9 2 6

Figure 13.2: Merges required to sort [3, 1, 4, 1, 5, 9, 2, 6].

The diagram makes analysis of the merge sort trivial. Starting at the bottom level, we have to copy the n
values into the second level. From the second to third level, the n values need to be copied again. Each level
of merging involves copying n values. The only question left to answer is how many levels are there? This
boils down to how many times a list of size n can be split in half. You already know from the analysis of
binary search that this is just log2 n. Therefore, the total work required to sort n items is n log2 n. Computer
scientists call this an n log n algorithm.

So which is going to be better, the n-squared selection sort or the n-log-n merge sort? If the input size is
small, the selection sort might be a little faster, because the code is simpler and there is less overhead. What
happens, though as n gets larger? We saw in the analysis of binary search that the log function grows very
slowly (log2 16 � 000 � 000 � 24) so n

�
log2 n � will grow much slower than n

�
n � .

Empirical testing of these two algorithms confirms this analysis. On my computer, selection sort beats
merge sort on lists up to size about 50, which takes around 0.008 seconds. On larger lists, the merge sort
dominates. Figure 13.3 shows a comparison of the time required to sort lists up to size 3000. You can see
that the curve for selection sort veers rapidly upward (forming half of a parabola), while the merge sort curve
looks almost straight (look at the bottom). For 3000 items, selection sort requires over 30 seconds while
merge sort completes the task in about 3

4 of a second. Merge sort can sort a list of 20,000 items in less than
six seconds; selection sort takes around 20 minutes. That’s quite a difference!

13.4 Hard Problems

Using our divide-and-conquer approach we were able to design good algorithms for the searching and sorting
problems. Divide and conquer and recursion are very powerful techniques for algorithm design. However,
not all problems have efficient solutions.

236 CHAPTER 13. ALGORITHM ANALYSIS AND DESIGN

0

5

10

15

20

25

30

35

0 500 1000 1500 2000 2500 3000

S
ec

on
ds

List Size

’selSort’
’mergeSort’

Figure 13.3: Experimental comparison of selection sort and merge sort.

13.4.1 Towers of Hanoi

One very elegant application of recursive problem solving is the solution to a mathematical puzzle usually
called the Tower of Hanoi or Tower of Brahma. This puzzle is generally attributed to the French mathe-
matician Edouard Lucas, who published an article about it in 1883. The legend sorrounding the puzzle goes
something like this.

Somewhere in a remote region of the world is a monastery of a very devout religious order. The monks
have been charged with a sacred task that keeps time for the universe. At the beginning of all things, the
monks were given a table that supports three vertical posts. On one of the posts was a stack of 64 concentric
golden disks. The disks are of varying radii and stacked in the shape of a beautiful pyramid. The monks
were charged with the task of moving the disks from the first post to the third post. When the monks have
completed their task, all things will crumble to dust and the universe will end.

Of course, if that’s all there were to the problem, the universe would have ended long ago. To maintain
divine order, the monks must abide by certain rules.

1. Only one disk may be moved at a time.

2. A disk may not be “set aside.” It may only be stacked on one of the three posts.

3. A larger disk may never be placed on top of a smaller one.

Versions of this puzzle were quite popular at one time, and you can still find variations on this theme in
toy and puzzle stores. Figure 13.4 depicts a small version containing only eight disks. The task is to move
the tower from the first post to the third post using the center post as sort of a temporary resting place during
the process. Of course, you have to follow the three sacred rules given above.

We want to develop an algorithm for this puzzle. You can think of our algorithm either as a set of steps
that the monks need to carry out, or as a program that generates a set of instructions. For example, if we label
the three posts A, B and C. The instructions might start out like this:

Move disk from A to C.

13.4. HARD PROBLEMS 237

Figure 13.4: Tower of Hanoi puzzle with eight disks.

Move disk from A to B.
Move disk from C to B.
...

This is a difficult puzzle for most people to solve. Of course, that is not surprising, since most people are
not trained in algorithm design. The solution process is actually quite simple—if you know about recursion.

Let’s start by considering some really easy cases. Suppose we have a version of the puzzle with only
one disk. Moving a tower consisting of a single disk is simple— we just remove it from A and put it on C.
Problem solved. OK, what if there are two disks? I need to get the larger of the two disks over to post C, but
the smaller one is sitting on top of it. I need to move the smaller disk out of the way, and I can do this by
moving it to post B. Now the large disk on A is clear; I can move it to C and then move the smaller disk from
post B onto post C.

Now let’s think about a tower of size three. In order to move the largest disk to post C, I first have to move
the two smaller disks out of the way. The two smaller disks form a tower of size two. Using the process I
outlined above, I could move this tower of two onto post B, and that would free up the largest disk so that I
can move it to post C. Then I just have to move the tower of two disks from post B onto post C. Solving the
three disk case boils down to three steps.

1. Move a tower of two from A to B.

2. Move one disk from A to C.

3. Move a tower of two from B to C.

The first and third steps involve moving a tower of size two. Fortunately, we have already figured out how to
do this. It’s just like solving the puzzle with two disks, except that we move the tower from A to B using C
as the temporary resting place and then from B to C, using A as the temporary.

We have just developed the outline of a simple recursive algorithm for the general process of moving a
tower of any size from one post to another.

Algorithm: move n-disk tower from source to destination via resting place

move n-1 disk tower from source to resting place
move 1 disk tower from source to destination
move n-1 disk tower from resting place to destination

238 CHAPTER 13. ALGORITHM ANALYSIS AND DESIGN

What is the base case for this recursive process? Notice how a move of n disks results in two recursive moves
of n � 1 disks. Since we are reducing n by one each time, the size of the tower will eventually be 1. A tower
of size 1 can be moved directly by just moving a single disk; we don’t need any recursive calls to remove
disks above it.

Fixing up our general algorithm to include the base case gives us a working moveTower algorithm.
Let’s code it up in Python. Our moveTower function will need parameters to represent the size of the tower,
n; the source post, source; the destintation post, dest; and the temporary resting post, temp. We an use
an int for n and the strings ”A”, ”B”, and ”C” to represent the posts. Here is the code for moveTower.

def moveTower(n, source, dest, temp):
if n == 1:

print "Move disk from", source, "to", dest+"."
else:

moveTower(n-1, source, temp, dest)
moveTower(1, source, dest, temp)
moveTower(n-1, temp, dest, source)

See how easy that was? Sometimes using recursion can make otherwise difficult problems almost trivial.
To get things started, we just need to supply values for our four parameters. Let’s write a little function

that prints out instructions for moving a tower of size n from post A to post C.

def hanoi(n):
moveTower(n, "A", "C", "B")

Now we’re ready to try it out. Here are solutions to the three- and four-disk puzzles. You might want to
trace through these solutions to convince yourself that they work.

>>> hanoi(3)
Move disk from A to C.
Move disk from A to B.
Move disk from C to B.
Move disk from A to C.
Move disk from B to A.
Move disk from B to C.
Move disk from A to C.

>>> hanoi(4)
Move disk from A to B.
Move disk from A to C.
Move disk from B to C.
Move disk from A to B.
Move disk from C to A.
Move disk from C to B.
Move disk from A to B.
Move disk from A to C.
Move disk from B to C.
Move disk from B to A.
Move disk from C to A.
Move disk from B to C.
Move disk from A to B.
Move disk from A to C.
Move disk from B to C.

So, our solution to the Tower of Hanoi is a “trivial” algorithm requiring only nine lines of code. What
is this problem doing in a section labeled hard problems? To answer that question, we have to look at the
efficiency of our solution. Remember, when I talk about the efficiency of an algorithm, I mean how many

13.4. HARD PROBLEMS 239

steps it requires to solve a given size problem. In this case, the difficulty is determined by the number of disks
in the tower. The question we want to answer is how many steps does it take to move a tower of size n?

Just looking at the structure of our algorithm, you can see that moving a tower of size n requires us to
move a tower of size n � 1 twice, once to move it off the largest disk, and again to put it back on top. If we
add another disk to the tower, we essentially double the number of steps required to solve it. The relationship
becomes clear if you simply try out the program on increasing puzzle sizes.

Numer of Disks Steps in Solution
1 1
2 3
3 7
4 15
5 31

In general, solving a puzzle of size n will require 2n � 1 steps.
Computer scientists call this an exponential time algorithm, since the measure of the size of the problem,

n, appears in the exponent of this formula. Exponential algorithms blow up very quickly and can only be
practically solved for relatively small sizes, even on the fastest computers. Just to illustrate the point, if our
monks really started with a tower of just 64 disks and moved one disk every second, 24 hours a day, every day,
without making a mistake, it would still take them over 580 billion years to complete their task. Considering
that the universe is roughly 15 billion years old now, I’m not too worried about turning to dust just yet.

Even though the algorithm for Towers of Hanoi is easy to express, it belongs to a class known as in-
tractable problems. These are problems that require too much computing power (either time or memory)
to be solved in practice, except for the simplest cases. And in this sense, our toy-store puzzle does indeed
represent a hard problem. But some problems are even harder than intractable, and we’ll meet one of those
in the next section.

13.4.2 The Halting Problem

Let’s just imagine for a moment that this book has inspired you to pursue a career as a computer professional.
It’s now six years later, and you are a well-established software developer. One day, your boss comes to you
with an important new project, and you are supposed to drop everything and get right on it.

It seems that your boss has had a sudden inspiration on how your company can double its productivity.
You’ve recently hired a number of rather inexperienced programmers, and debugging their code is taking an
inordinate amount of time. Apparently, these wet-behind-the-ears newbies tend to accidently write a lot of
programs with inifinite loops (you’ve been there, right?). They spend half the day waiting for their computers
to reboot so they can track down the bugs. Your boss wants you to design a program that can analyze source
code and detect whether it contains an infinite loop before actually running it on test data. This sounds like
an interesting problem, so you decide to give it a try.

As usual, you start by carefully considering the specifications. Basically, you want a program that can read
other programs and determine whether they contain an infinite loop. Of course, the behavior of a program is
determined not just by its code, but also by the input it is given when it runs. In order to determine if there is
an infinite loop, you will have to know what the input will be. You decide on the following specification:

Program: Halting Analyzer

Inputs: A Python program file.
The input for the program.

Outputs: “OK” if the program will evenutally stop.
“FAULTY” if the program has an infinite loop.

Right away you notice a couple interesting things about this program. One is that it is a program that
examines other programs. You have not written many of these before, but you know that it’s not a problem
in principle. After all, compilers and interpreters are common examples of programs that analyze other
programs. You can represent both the program that is being analyzed and the proposed input to the program
as Python strings.

240 CHAPTER 13. ALGORITHM ANALYSIS AND DESIGN

The second thing you notice is that this description sounds similar to something you’ve heard about
before. Hmmm... a program that determines whether another program will halt or not. Suddenly it dawns on
you: this is known as the Halting Problem, and it’s unsolvable. There is no possible algorithm that can meet
this specification!

How do we know that there is no solution to this problem? This is a question that all the design skills in
the world will not answer for you. Design can show that problems are solvable, but it can never prove that a
problem is not solvable. To do that, we need to use our analytical skills.

One way to prove that something is impossible is to first assume that it is possible and show that this leads
to a contradiction. Mathematicians call this proof by contradiction. We’ll use this technique to show that the
halting problem cannot be solved.

We begin by assuming that there is some algorithm that can determine if a program terminates when
executed on a particular input. If such an algorithm could be written, we could package it up in a function.

def terminates(program, inputData):
program and inputData are both strings
RETURNS true if program would halt when run with inputData
as its input.

Of course, I can’t actually write the function, but let’s just assume that this function exists.
Using the terminates function, we can write a goofy program.

goofy.py
import string

def terminates(program, inputData):
program and inputData are both strings
RETURNS true if program would halt when run with inputData
as its input.

def main():
Read a program from standard input
lines = []
print "Type in a program (type ’done’ to quit)."
line = raw_input("")
while line != "done":

lines.append(line)
line = raw_input("")

testProg = string.join(lines, "\n")

If program halts on itself as input, go into an infinite loop
if terminates(testProg, testProg):

while 1: pass

main()

The first thing goofy.py does is read in a program typed by the user. This is accomplished with a sentinel
loop that accumulates lines in a list one at a time. The string.join function then concatenates the
lines together using a newline character ("

�
n") between them. This effectively creates a multi-line string

representing the program that was typed.
Goofy.py then calls the terminates function and sends the input program as both the program to

test and the input data for the program. Essentially, this is a test to see if the program read from the input
terminates when given itself as input. The pass statement actually does nothing; if the terminates
function returns true, goofy.py will go into an infinite loop.

OK, this seems like a silly program, but there is nothing in principle that keeps us from writing it, provided
that the terminates function exists. Goofy.py is constructed in this peculiar way simply to illustrate a
point. Here’s the million dollar question: What happens if we run goofy.py and, when prompted to type

13.4. HARD PROBLEMS 241

in a program, type in the contents of goofy.py? Put more specifically, does goofy.py halt when given
itself as its input?

Let’s think it through. We are running goofy.py and providing goofy.py as its input. In the call to
terminates, both the program and the data will be a copy of goofy.py, so if goofy.py halts when
given itself as input, terminateswill return true. But if terminates returns true, goofy.py then goes
into an infinite loop, so it doesn’t halt! That’s a contradiction; goofy.py can’t both halt and not halt. It’s
got to be one or the other.

Let’s try it the other way around. Suppose that terminates returns a false value. That means that
goofy.py, when given itself as input goes into an infinite loop. But as soon as terminates returns false,
goofy.py quits, so it does halt! It’s still a contradiction.

If you’ve gotten your head around the previous two paragraphs, you should be convinced that goofy.py
represents an impossible program. The existence of a function meeting the specification for terminates
leads to a logical impossibility. Therefore, we can safely conclude that no such function exists. That means
that there cannot be an algorithm for solving the halting problem!

There you have it. Your boss has assigned you an impossible task. Fortunately, your knowledge of
computer science is sufficient to recognize this. You can explain to your boss why the problem can’t be
solved and then move on to more productive pursuits.

13.4.3 Conclusion

I hope this chapter has given you a taste of what computer science is all about. As the examples in this chapter
have shown, computer science is much more than “just” programming. The most important computer for any
computing professional is still the one between the ears.

Hopefully this book has helped you along the road to becoming a computer programmer. Along the way,
I have tried to it has pique your curiousity about the science of computing. If you have mastered the concepts
in this text, you can already write interesting and useful programs. You should also have a firm foundation of
the fundamental ideas of computer science and software engineering. Should you be interested in studying
these fields in more depth, I can only say “go for it.” Perhaps one day you will also consider yourself a
computer scientist; I would be delighted if my book played even a very small part in that process.

