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An Empirical Analysis of Network Externalities in 

P2P Music-Sharing Networks 
 
 

Abstract 

Peer-to-peer (P2P) networks are becoming an important medium for the distribution of 
consumer information goods. However, there is little academic research into the behavior 
of these networks. We analyze the impact of positive and negative network externalities 
on the optimal size of P2P networks. Using data collected from the six most popular 
OpenNap P2P music-sharing networks between December 19, 2000 and April 22, 2001 
we find that additional users contribute value in terms of additional network content at a 
diminishing rate, while they impose costs in terms of congestion on shared resources at 
an increasing rate.  

Using an analytic model, we explore technical solutions to the congestion problem, for 
example by increasing network capacity. This model suggests that although increasing 
capacity will allow more users to participate on the network, there may be little incentive 
for network operators to do so. This is because diminishing positive network externalities 
imply decreasing content benefits to adding more users. Together these results suggest 
that the optimal size of a P2P network may be bounded in many common 
implementations. We conclude by discussing various options to improve network 
performance including network membership rules and usage-based pricing. 
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1. Introduction 

Peer-to-peer (P2P) networks are an important social phenomenon and an emerging medium for 

the distribution of consumer information goods. They may also become important tools for the 

management of data and services within the enterprise in the near future. The most well known 

application for the P2P technology is music sharing. After its launch in May 1999, Napster 

enabled millions of individual users to share MP3 music tracks. Napster and subsequent P2P file 

sharing networks demonstrate the potential for P2P networks to facilitate collective usage of 

resources shared by autonomous peers. 

In spite of this potential, there is little academic research into the behavior of these networks in 

terms of the value users bring to the network, the costs they impose on the network, or the impact 

of these factors on network behavior. Systematic research to address these questions is important 

for a variety of constituencies including engineers designing protocols to support P2P networks, 

entrepreneurs developing P2P-based businesses, and intellectual property holders seeking to 

develop their own networks and to minimize the use of non-complying networks. 

In this paper, we study network externalities that arise in P2P music-sharing networks. A 

network externality is the marginal effect that an additional user of a network has on existing 

users. In contrast to network externalities that arise in telecommunication networks, which are 

driven by user membership (e.g., Metcalfe’s law), network externalities in P2P networks are 

driven by network content. Because of this, P2P networks have many of the properties of club 

goods and public goods. In the economics literature, public goods are goods that are non-

excludable in supply and non-rivalrous in demand (Samuelson 1954). Non-excludability means 

the good must be supplied to everyone or not at all and non-rivalrous means that the 
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consumption of the good by one individual does not reduce the utility of consumption by other 

individuals. Examples of public goods include radio broadcasts or sunlight. Club goods, in 

contrast are goods that are excludable in supply and have some degree of rivalry in demand (i.e., 

between completely rivalrous and non-rivalrous). A discrete unit of apple is completely rivalrous 

because when you consume it, its utility is completely depleted. On the other hand, a radio 

broadcast is non-rivalrous. The quality does not degrade when you increase listeners. A 

swimming pool, however, is somewhere in between. One person may not make the pool 

unusable by others, but too many people can make it crowded and reduce utility. The focus of 

club goods is in determining the right member size for a finite collective who have the exclusive 

right to use a club good (e.g., swimming pool) (Buchanan 1965). 

The services provided over P2P networks have some of the characteristics of public goods. 

Membership is typically not controlled and once a user gains access to the network they can 

access all the services provided by the network (i.e., non-excludability). Further, as we discuss in 

more detail below, in the absence of free-riding song replication should scale with network size, 

creating a situation where the consumption of network resources is non-rivalrous. However, 

these characteristics may also be relaxed in some environments to create an environment more 

similar to club goods. For example, P2P networks can impose some degree of excludability 

through membership rules or limits on access to network services (e.g., through subscription 

services and digital rights management systems as employed by Napster in early 2002). 

Likewise, increasing free-riding can create rivalry among users for scarce network content.1 

                                                 
1 Note that the economic characteristics of the P2P network services we refer to are independent from the legal and 
ethical characteristics of the information provided over these services. 
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Two results from the public and club economics literature are significant in the context of P2P 

networks. First, Hardin (1968) argues that the self-interested consumption of public goods may 

deplete the overall public utility, a.k.a. the “tragedy of the commons.” Second, the propensity to 

“free-ride” (enjoying the public good provided by others while not supplying the good yourself) 

worsens as group size increases as argued by Olson (1968) and shown analytically by Palfrey 

and Rosenthal (1984) and Hindriks and Pancs (2001) among others. In applying these results we 

draw on both the economics literature and the information systems (IS) literature with regard to 

the technical characteristics of P2P networks. 

To empirically analyze these questions in the context of P2P networks, we develop a reduced 

form utility model of user behavior and use this model to empirically analyze the characteristics 

of free-riding and network utility as a function of network size. Our empirical analysis uses a 

data set gathered from the six most popular OpenNap (a.k.a. Open Source Napster) networks in 

December 2001. Our data were collected from December 19, 2000 to April 22, 2001 and include 

information on network congestion, and song availability and replication (number of copies of 

the song available for sharing on the network) for 170 randomly selected songs in 17 musical 

genres. Using ordinary least squares, logit, Poisson, and zero-inflated Poisson regression models, 

we find that additional users contribute value in terms of additional network content at a 

diminishing rate, while they impose costs in terms of congestion on shared resources at an 

increasing rate. This points to a potential inefficiency with larger P2P networks. 

To explore this further, we apply an analytical model used in telecommunications analysis to 

assess the benefit of increasing network capacity in reducing congestion. This model shows that 

although increasing capacity may allow more users to participate on a network, there may be 

little incentive for network operators to provision this capacity. This is because diminishing 
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positive network externalities imply decreasing benefits to adding more capacity (and therefore 

users). 

The remainder of this paper proceeds as follows. Section 2 provides background on P2P 

networks and reviews the relevant IS and economics literature. Section 3 presents a model of 

positive and negative externalities in P2P networks and discusses hypotheses for how these 

externalities should vary with network size. Section 4 discusses the empirical data we collect to 

address these hypotheses and section 5 presents our empirical results. Section 6 concludes and 

identifies areas for future research. 

2. Background 

At its core, P2P networking enables resource sharing directly between network users. These 

resources are most commonly in the form of information, such as files or digital content, but can 

also include storage capacity or computing power. Thus, P2P networking is different from a 

traditional client-server environment where all network resources are contained in and managed 

by a central location.  

Internet Relay Chat (IRC), which was developed in the late 1980s, was one of the first P2P 

network services. IRC allowed for the transmission of text messages, and later digital content, 

directly between groups of network users. Subsequent P2P file sharing networks, such as 

Napster, OpenNap, Gnutella, Kazaa, and Morpheus, achieved much higher levels of adoption 

(and publicity) by enhancing the ability to locate and download content from the network. More 

recently, P2P networks are gaining popularity for applications such as distributed computing 

(e.g., SETI@Home), collaboration (e.g., Groove Networks), and enterprise information sharing 

(e.g., Bad Blue). 
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In addition to the variety of application environments, P2P networks have also been deployed 

with a variety of network architectures. These architectures can be summarized along two axes: 

the degree of decentralization of the network content and the degree of decentralization of the 

catalog of this content. The degree of decentralization of network content pertains to whether the 

content is stored in a central location (increasing direct management of the content), or is stored 

in a distributed manner separately by the individual peers (speeding download time, caching 

content within the network infrastructure, offloading bandwidth burden to the edge of the 

network and eliminating a single point of failure for content distribution). The degree of 

decentralization of the catalog of content pertains to whether this catalog is stored in a central 

location (increasing the accuracy and reliability of the catalog), or is stored in a distributed 

manner separately by the individual peers (eliminating a single point of failure for directory 

services).2 

P2P networks have adopted a variety of designs with regard to content and catalog 

decentralization. For example, the Napster protocol, which was implemented in the Napster and 

OpenNap networks, has fully decentralized content, but a centralized file catalog. The Gnutella 

protocol decentralizes both the content and file catalog. Gnutella users connect to a few (3-5) 

other peers, who maintain recursive connections to subsequent peers down the path. A user 

broadcasts requests for content along these paths until they have reached a predetermined depth 

(typically 7 hops). The more recent Morpheus and Kazaa networks use Supernodes — 

                                                 
2 There are various realizations of distributed catalogs. These range from “virtual catalogs” that are generated by 
querying individual nodes in a network in response to a request for content as is done in Gnutella networks to 
maintaining catalogs about the content available in a small neighborhood of nodes as is done in Kazaa and 
Morpheus. The ability to evade law enforcement through the use of distributed catalogs is cited as an “advantage” 
by opponents of the intellectual property regime prevailing in the music industry. 
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distinguished peers that host catalogs of their neighboring peers — making them quasi-

centralized in catalog and decentralized in content. 

In this paper, we focus our analysis on the Napster protocol as implemented in the OpenNap 

networks. After its launch in May of 1999, Napster became the first mainstream P2P music-

sharing network. Shortly thereafter, an open source group reversed engineered its protocol and 

built the non-commercial OpenNap networks. The OpenNap networks consist of multiple 

disjointed centralized networks, while Napster consists of a single monolithic network.  

As defined by the Napster protocol, users perform the following steps to use the OpenNap 

network. First, a user must login to a central OpenNap server. Once logged in, the user computer 

stays connected to the central server for the duration of their presence on the network. The user 

computer that is connected in this manner is referred to as a peer. Servers have limited capacity 

for maintaining such simultaneous connections with peers.  All login requests from peers when 

the server is above capacity are rejected. After a successful login, a list of the files the user is 

sharing and associated information is uploaded to a central catalog at the server. Any change in 

the content available on the user computer is immediately uploaded resulting in a catalog that is 

always current. The catalog contains file information and peer location (i.e., IP address) for all 

content on the network. To locate a file the user places a keyword query against this catalog 

database and the database returns a list of any matching results. This list includes the name, 

length, encoding speed, and provider for each file. The client program issues a ping request to 

each provider and sorts the list in ascending order by ping time (i.e., a measure of the congestion 

at the peer). At this point the user chooses an entry in the list to initiate a download from the 

provider. This request may be accepted or queued by the provider. Providers typically accept a 

limited number of simultaneous downloads and queue any additional download requests. Once 
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the download request is accepted, the requesting peer computer downloads the content from the 

provider. Unless otherwise specified, the requesting peer now becomes a provider of the content. 

This is referred to as autoreplication and is manner by which content replicas are created on the 

network. In this manner content replicates on the network. 

Few papers have studied the behavior of P2P networks of this sort. Our work builds on the few 

papers that do and on a larger body of economics research that addresses public and club goods.3 

With respect to P2P research, Adar and Huberman (2000) found that 1% of Gnutella users 

provided 50% of query results and 70% of users provided no results (i.e., were free-riding). 

These results highlight the sub-optimal sharing that can obtain in the absence of external 

incentives on user behavior. In addressing these problems, Golle, Leyton-Brown and Mironov 

(2001) use a game theoretic model to study the benefit of introducing micro-payment systems to 

P2P networks. Our research extends this work by analyzing network externalities in P2P 

networks and the drivers of free-riding behavior in the context of optimal network size. 

3. Model 

Initially, users chose among competing networks, which are characterized by positive and 

negative network externalities. A network externality is the marginal effect that an additional 

user has on existing users. Positive externalities arise because the number of users is positively 

related to the range of content available and the number of copies of each track, which ceteris 

paribus will increase variety and reduce the expected download time. Negative externalities arise 

because more users increase the expected login, query, and download times. 

                                                 
3 For example, the large body of experimental research that addresses free-riding in a typical public goods setting. 
See Davis and Holt (1993) or Ledyard (1995) for reviews of this literature. 
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Formally, let each user on the network have utility given by the sum of the utility from the 

availability and replication of a vector of content F and the (dis)utility of a vector of congestion 

effects C: 

U(F(N), C(N)) = UF(F(N)) + UC(C(N)) (1) 

Consistent with these definitions, let users be (weakly) better off when more variety or more 

replicas of content are provided by the network and (weakly) worse off when network congestion 

increases: 

∂U/∂f≥0 (2) 

∂U/∂c≤0 (3) 

where f is an element of the vector F and c is an element of the vector C, and let content and 

congestion (weakly) increase in N: 

∂f/∂N≥0 (4) 

∂c/∂N≥0 (5) 

Finally, assume that U is concave in both f and c: 

∂2U/∂f2≤0 (6) 

∂2U/∂c2≤0 (7) 

such that users have a diminishing marginal utility from more content and more replicas of 

content, and the marginal impact of congestion on utility is either constant or declining (i.e., an 

additional minute of wait time has a larger impact on utility when wait time is 1 minute than 

when it is 100 minutes). 
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Using this model, we wish to characterize how positive network externalities from content and 

negative network externalities from congestion vary with the number of network users (i.e., 

∂UF/∂N, ∂2UF/∂N2, ∂UC/∂N, ∂2UC/∂N2). From this, we also wish to analyze how aggregate 

network utility varies with the number of network users (i.e., ∂U/∂N, ∂2U/∂N2) as a way to 

understand the impact of network externalities on optimal network size. Using (1) the former 

values are given by 

∂UF/∂N=∂U/∂f•∂f/∂N (8) 

∂2UF/∂N2=∂2U/∂f2•(∂f/∂N)2+∂U/∂f•∂2f/∂N2 (9) 

∂UC/∂N=∂U/∂c•∂c/∂N (10) 

∂2UC/∂N2=∂2U/∂c2•(∂c/∂N)2+∂U/∂c•∂2c/∂N2 (11) 

and the latter values are given by ∂U/∂N=∂UF/∂N+∂UC/∂N and ∂2UF/∂N2=∂2UF/∂N2+∂2UF/∂N2. 

By (2) and (4) ∂UF/∂N≥0 and similarly by (3) and (5) ∂UC/∂N≤0. Thus, more users increase both 

the value of the content on the network and the cost of congestion for network users. In addition, 

while it is true that for networks to form at all ∂U/∂N must be positive for sufficiently small N, 

over the full spectrum of network sizes ∂U/∂N may be either positive or negative based on the 

relative magnitudes of the content and congestion effects. 

Thus, the optimal number of users is bounded if the second derivative of utility with respect to 

the number of users is negative (∂2U/∂N2<0). By (2), (3), (6), and (7) this will be the case if both 

of the following hypotheses are true: 

Hypothesis 1: ∂2f/∂N2<0 

Hypothesis 2: ∂2c/∂N2>0 
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Hypothesis 1 is consistent with analytic models in the club goods literature that the propensity to 

free-ride increases in network size (e.g., Palfrey and Rosenthal 1984, Hindriks and Pancs 2001). 

If free-riding increases with network size, additional users will be less likely to provide either 

new content or replicas of existing content on the network as network size increases. Hypothesis 

2 is consistent with the technical characteristics of the network in terms of capacity constraints 

on network logins, user-defined constraints on the number of simultaneous downloads, and 

technological constraints on the number of simultaneous queries that can be processed by the 

centralized catalog.   

To test hypothesis 1, we measure the collective content on the network in terms of availability 

and replication. Availability measures the number of unique songs that are provided on the 

network. Replication measures number of copies of each song and may be a particularly 

important measurement of network behavior. As noted, a default property of the Napster 

software is that consumers of a song also become providers for the song, auto-replicating the 

song for the network. Autoreplication allows a P2P network to efficiently meet download 

demand from users. A more popular song will have more providers than a less popular song. The 

value of replication is that it helps distribute the load on the providers if multiple users choose to 

download songs simultaneously. It is important for replication to scale consistently with network 

size in order for download performance to scale well. 

In an ideal case, the replication of a song will always scale consistently with network size. That 

is, the replication per user of a song will always remain constant and equal the fraction of all 

users desiring the song. However, this will not be the case to the extent that users choose to free 

ride by consuming network resources but disabling sharing. This problem may be exacerbated in 

larger networks because, as noted above, it is well established in the economics literature that the 
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private provision of public goods tends to diminish as group size increases. In applying this 

result to P2P networks it is important to note that in a typical case of private provision of public 

goods, individuals have to take action to contribute resources. In the case of P2P networks, 

individuals have to take action not to contribute resources. However, despite the necessity of 

taking action to disable file sharing, users may do so if they are concerned about legal risks or 

the congestion other users will impose on their connection to the network. 

To test hypothesis 2, we measure the cost of accessing content on the network in terms of login 

congestion, query congestion, download attempt congestion, and download speed congestion. 

These measures of the negative network externalities reflect the steps in user interaction with 

centralized P2P networks where the congestion or delays may take place. Login congestion 

measures the difficulty of logging on to the network. We expect login congestion to be low 

initially and to quickly rise as network size approaches server capacity. Query congestion 

measures the delay in waiting for a search query result. When users perform search queries for a 

file, they place traffic demand on the centralized servers that perform database lookups, 

potentially degrading network performance for other users. This may happen in two ways: 

having more users may increase the size of the database that contains the listing of the files 

provided by the users; and having more users may generate more simultaneous search queries 

that the centralized servers must process. Download attempt congestion measures the number of 

attempts that a peer must make before they find a provider that does not queue their download 

request. As noted above, P2P nodes can define a maximum number of simultaneous downloads 

they are willing to serve. Requests above this value are then queued for subsequent processing. 

Download speed measures the amount of time to download content over the network. If some 

degree of free riding is found in the analysis of replication, we expect that fewer providers will 
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be handling more concurrent downloads in larger networks, increasing the likelihood that 

download attempts are queued and decreasing download speed as more users share bandwidth 

limited connections. 

4. Data 

To empirically test these hypotheses, we collected data from six OpenNap networks on network 

congestion characteristics and content availability for 170 songs. The six OpenNap networks 

used in the data collection were the most popular networks listed by Napigator.com at the 

beginning of our collection period. The 170 songs were selected at random from the full 

repertoire of all popular artists in 17 separate genres listed at Amazon.com.4 Our data were 

collected every 18 hours from December 2000 to April 2001 and include user count, server 

count, login congestion (the number of login retries before a successful login), query congestion, 

and song availability, song replication (total number of copies on the network), and broadband 

song replication (total number over broadband connections) (Table 1). These data were collected 

using an automated software agent written for this purpose. The agent implemented an open 

source documentation of the Napster protocol and was specifically designed to mimic the actions 

of typical Napster users.5 

We choose popular artists because song availability was very low for a random selection of 

songs from all artists. The main drawback of this approach is that some tracks may become less 

popular over our data collection. However, the content was selected from the full repertoire of 

the artist (not just their most recent album) meaning that the only a few tracks were recent 

                                                 
4 We used Amazon.com’s listings after determining that it had one of the most comprehensive publicly available 
databases of music content available on the Internet. 
5 This agent was also designed to have a negligible impact on network performance by spreading out content queries 
over time and by only downloading a small portion of songs when determining download speeds. 
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releases.6 We further checked the sensitivity of our results to changes in popularity by 

referencing the 36 most popular album charts tracked by Billboard at the beginning and end of 

our sample period. We found 5 songs that were contained in albums that moved off the Billboard 

album charts during our sample period. Eliminating these songs from our analysis would not 

change any of our results 

Table 1: Summary Statistics 

Variable Obs. Mean St. Dev. Min Max 
Login Congestion, Query Congestion, and Song Availability 

User Count 323 3,118 2,283 68 8,618 
Server Count 323 7 3.40 1 15 
Song Availability 83,640 0.54 0.50 0 1 
Song Availability (Broadband Connection) 83,640 0.45 0.50 0 1 
Number of Songs 83,640 11 30 0 555 
Number of Songs (Broadband Connections) 83,640 6 21 0 460 
Login Congestion (Seconds) 323 3 8 0 71 
Query Congestion (Seconds) 323 10 17 0.13 90 

Download Attempts and Speed 
User Count 13 2,620 687 1,458 3,588 
Download Attempts 582 2.85 4.37 1 45 
Download Speed (kbps) 582 32 33 0 200 

 

Our data exhibit substantial variation in music track availability across genres and connection 

types. Figure 1 shows that on average OpenNap networks had 95 percent of the tracks in Pop, the 

most popular genre, and 2.7 percent of the tracks in Emerging Artists, the least popular genre. If 

a user restricted preference to the music available through a broadband connection, the numbers 

fell to 90 percent for Pop and 1.7 percent for Emerging Artists. 

To further explore how congestion varies with network size, we collected an additional dataset 

on download congestion and speed in March 28, 2001 to April 19, 2001 (Table 1). This dataset 

                                                 
6 We note that for all genres except emerging artists the list of best selling artists did not change over the data 



14 

includes information on the size of the network and two measures of the congestion a user would 

face when trying to download a song. The first measure, download attempts, is the number of 

download attempts our agent had to make (starting with the listing with the lowest ping time) 

before finding a peer that did not queue the download request. The second measure, download 

speed, is the download speed our agent observed when downloading the song. 

Figure 1: Average Availability on OpenNap Networks 
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5. Empirical Analysis of the Network Externalities 

5.1. Positive Network Externalities 

Hypothesis 1 states that the marginal value that a user brings to the network, measured in terms 

of availability and replication, will decline in the size of the network. We use two models to test 

this hypothesis. For availability, we use a logit model to regress song availability (0/1) onto user 

count. For replication, we use an OLS regression of the number of song replicas onto user count. 

In each case, we compare the fit across three different specifications for user count: the log of 

                                                                                                                                                             
collection period 
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user count, a third degree polynomial of centered user count, and user count alone for 

comparison. Centering is used to control for multicollinearity among the polynomial terms 

(Aiken and West (1991), Bryk and Raudenbush (1992)).7 We also use dummy variables for 

connnection speed, time period,8 music genre, and network to control for other, potentially 

confounding, sources of variation. 

Results for both regressions are presented in Table 2. Consistent with hypothesis 1, 

specifications 1, 2, 4, and 5 show that while user count has a strong positive effect on the 

probability that a music track is available and on the number of replicas, marginal value of 

additional users diminishes as networks increase in size. Specifications 1 and 4 provide the best 

fit for the two separate regressions, but their results are similar to specifications 2 and 5. 

Furthermore, each of these specifications of user count has better fit than the linear specifications 

(specifications 3 and 6). 

These results are shown graphically in Figures 2 and 3, which use the estimated coefficients for 

specifications 1 and 4 to graph availability and replication as functions of user count for the Pop, 

Jazz, and Emerging Artist genres. These graphs show that the availability and replication results 

vary significantly across genres.9 However, in each case the marginal value an additional user 

brings to the network declines with the number of users, confirming hypothesis 1. As noted 

above, in the absence of free riding, we would expect replication to scale linearly with network 

                                                 
7 Standard diagnostics suggest that centering in this way reduces collinearity in our polynomial terms. 
8 Time period I ranged from the beginning of data collection to when Napster announced its subscription plan on 
January 29, 2001. Time period II ranged from the subscription plan announcement to when Napster started filtering 
copyrighted tracks on March 2, 2001. Time period III ranged from the filtering of music tracks on Napster to the end 
of data collection. These time periods mark significant changes in OpenNap usage as users migrated from the 
Napster network to OpenNap. 
9 For example, the 4,000th user to join a network is 37% as likely to provide new pop content, 48% as likely to 
provide new jazz content, and 68% as likely to provide new emerging artist content as the 2,000th user to join the 
network. 
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size. The results shown are consistent with an increase in free riding as network size increases. 

We discuss this possibility in more detail below. 

 
Table 2: Regression Results for Positive Network Externalities 

Specification 1 2 3 4 5 6 
Regression 
Model Logit- Log 

Logit- 
Polynomial Logit-Linear 

OLS- 
Polynomial 

OLS-
Natural Log OLS-Linear 

Dep. Var. Avail. Avail. Avail. Replication Replication Replication 
Ln(user_count) 0.467   4.63  

 (0.008)   (0.07)  

user_count  1.82e-04   1.74e-03 
  (4.05e-06)   (3.27e-05) 
user_count’  4.72e-05  0.003   
  (1.27-e05)  (4.17e-05)   
user_count’2  -1.51e-07  -2.77E-07   
  (6.47e-09)  (1.64e-08)   
user_count’3  9.03e-12  -1.71e-12   
  (5.04e-13)  (1.27e-12)   
broadband -0.486 -0.485 -0.481 -4.74 -4.73 -4.74 
 (0.012) (.012) (.012) (0.11) (0.11) (0.11) 
time_II -0.223 -0.219 -.275 -2.93 -3.12 -3.67 
 (0.013) (0.013) (0.013) (0.13) (0.13) (0.13) 
time_III 0.080 0.063 0.167 -6.06 -7.86 -7.96 
 (0.025) (0.025) (0.025) (0.21) (0.20) (0.20) 
Genre [16] Yes Yes Yes Yes Yes Yes 
Network [5] Yes Yes Yes Yes Yes Yes 
Number of 
observations 166,770 166,770 166,770 166,770 166,770 166,770 
(pseudo) R2 0.253 0.252 0.247 0.199 0.191 0.186 

Notes: Centering is accomplished as user_count’ = avg(user_count) - user_count. Standard errors are in parentheses. 
Values in brackets denote the number of fixed effect variables for genre and network type. Italicized coefficients are 
insignificant (P=.05). 
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Figure 2: Availability Regression Result 
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Figure 3: Replication Regression Result 
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5.2. Negative Network Externalities 

As noted above, the negative network externalities are reflected in four measures: an increase in 

the number of login retries necessary to access the network, longer query times, an increase in 



18 

the number of queued download attempts, and longer download times. We use four separate 

regressions to analyze how these measures change with network size. 

For login congestion, we model the number of login retries necessary to gain access to the 

network as a function of user count and server count (a proxy for network capacity). We use a 

zero-inflated Poisson regression model (Lambert 1992), and control for the fixed effects for time 

periods and networks. The Poisson model captures the behavior of a count dependent variable 

with a long right tail. Zero-inflation controls for the fact that below network capacity no retries 

are necessary. For query congestion, we regress the log of query congestion onto user count, 

server count, and the fixed effects for networks and time periods. Download attempts are 

analyzed using a Poisson model of download attempts onto user count and genre and network 

fixed effects.10 We analyze download speed congestion using an OLS model of download speed 

onto user count and the connection type fixed effects (network fixed effects are collinear with 

user count in the download dataset). 

Table 3 presents the results of the four regressions. Consistent with hypothesis 2, congestion 

increases in user count at an increasing rate for all types of congestion analyzed. The relationship 

between user count and congestion is shown graphically in Figure 4, which projects our results in 

terms of length in seconds. We assume each login retry and download attempt to take 12 and 15 

seconds. We estimate download speed for downloading a 5MB file from a cable modem. These 

assumptions reflect the average values in our empirical analysis. 

                                                 
10 As noted above, the supplemental dataset on download congestion was collected over a 3 week time period (Mar 
28 to April 19) and therefore we do not use time period fixed effects in these regressions. 
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Table 3: Regression Results for Negative Network Externalities 

Regression Login Login Query Download Download 
 Poisson Inflated Time Attempt Speed 

Method Zero-Inflated Poisson OLS Poisson OLS 
Dep. Var. # of Login Prob. No Log of # of Download Download 

 Retries Congestion Query Time Attempts Speed (kbps) 
user_count 2.8e-04 -7.1e-04 4.7e-04 4.17e-04 -4.1 
 (4.9e-05) (1.7e-04) (-7.3e-05) (-6.9e-05) (1.98) 
server_count 0.0085 -0.056 -0.079    
 (0.148) (0.064) (0.029)    
time [2] yes yes yes    
Network [5] yes yes yes yes   
genre [16]    yes Yes 
Connection [10]     Yes 
observations 323 323 323 582 582 
(pseudo) R2 0.28 0.45 0.12 0.18 

Notes: Standard errors are in parentheses. Values in brackets denote the number of fixed effect 
variables. Fixed effects are suppressed for simplicity. Italicized coefficients are insignificant at p=.05. 

 

5.3. The Impact of Increasing Server Capacity 

Thus, our empirical results seem to confirm hypotheses 1 and 2, which in turn suggest that 

network utility is concave in the number of users and that the optimal network size is bounded in 

the number of users. One obvious question arising from this analysis is how will these bounds 

change as capacity is added to the network. In this section we use standard telecommunications 

traffic models to analyze this question. We find that additional capacity will allow more users to 

access the network before the network returns to its previous levels of login congestion. 

However, additional users still add benefits at a decreasing rate (i.e., ∂2UF/∂N2≤0). Further, 

additional capacity does not solve the primary user-level problems demonstrated above: 

increasing free riding, increasing download attempt congestion, and decreasing download speed 

with larger networks. In sum, increased capacity has limited power to increase optimal network 

size. 
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Figure 4: Congestion Summary 
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Our formal analysis of this question is as follows. We first use the Erlang B equation (Frankel 

1976) to estimate the effect of changing capacity on login congestion. 

∑
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 (12) 

The Erlang B equation models the probability of congestion in a telecommunications switch. The 

centralized server in our setting is analogous to the switch since peer computers maintain stateful 

connections to the login server as telephones do to a switch for the duration of a call. 

In this formulation ρ = λ/µ, where λ is a Poisson random variable for the average number of users 

who arrive at a network each day; µ, also a Poisson random variable, is the service rate for each 

connection; and c is the capacity of the network. We calibrate these parameters as follows. Our 

empirical data indicate that on average users hold a connection for 12 hours, therefore µ=2 

connections per day. We use two capacity sizes: c=4,000 (approximately the mean network size 
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in our data), and c=6,000 (a larger network in our data). To model increases in arrival rate 

resulting from increasing capacities, we allow λ to vary between 0 and 40,000 users per day. 

Given the probability of congestion from the Erlang B model, we model the number of retries 

before a successful login as a geometric random variable, which is the standard model for access 

attempts above capacity. The average number of retries is given by the mean of the geometric 

random variable (equation 2): 

)(1
1)(
congestionoginlP

retriesoginlE
−

=  (13) 

This formulation may not exactly match the values found in the empirical analysis because, in 

the data collected, the agent repeatedly tried to login without any wait time. Thus, the retry 

attempts may not be independent as assumed by the geometric model. Nevertheless, the model 

should yield generally consistent results when compared to our data. 

Using equations 12 and 13, Figure 5 demonstrates the rate of change of the probability of 

congestion and expected number of retries at two different capacity levels as a function of the 

arrival rate of users to the network. For any given arrival rate, it is clear that as capacity 

increases, both measures of congestion decrease. However, as the arrival rate increases, the same 

levels of congestion recur in the higher capacity network. Further, as noted above, the additional 

users attracted by the additional capacity provide value in terms of availability and replication at 

a diminishing rate. This suggests that there may be little incentive for network operators to 

increase capacity because the congestion may rise to the same level with little gain in availability 

or replication. 
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Figure 5: Illustration of Increasing Capacity on Login Congestion 
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6. Discussion and Areas for Future Research 

P2P networks have had a significant impact on the distribution of information goods and may 

play a significant role in knowledge sharing and knowledge management within the enterprise in 

the future. However, despite their importance and potential, there is little academic research 

analyzing the their value and performance characteristics as a function of network size. This 

research addresses this gap by analyzing the positive and negative externalities that additional 
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users impose on centralized P2P networks, and how these externalities impact optimal network 

size and scalability. 

Using data collected from the six most popular OpenNap networks we find that additional users 

provide positive network externalities based on the quantity and uniqueness of the files they 

provide and negative network externalities in terms of login, query, download attempt and 

download speed congestion. However, the marginal value of an additional user declines with the 

number of existing users while the marginal cost of congestion imposed by users increases with 

network size. Using a reduced form utility model we show that these findings imply that optimal 

network size is bounded for these centralized P2P networks. 

We also find that the number of replicas of content per user decreases with network size. This is 

consistent with findings in the public economics literature that free riding worsens with group 

size and suggests that increased free-riding in larger P2P network is inherent to the collective 

action of users in the private provision of public goods. While it is impossible to isolate this 

explanation from a decrease in replicas due to unobserved customer heterogeneity, an increase in 

free riding with increasing network size would imply that we must treat the content on P2P 

networks as rivalrous goods in which autoreplication fails to scale supply to meet demand and 

over-consumption can lead to congestion. 

We use traffic models to explore the impact of increasing network capacity on optimal network 

size. We find that increased capacity has a limited impact on optimal network size and that the 

value of increased capacity decreases with network size. We also note that, while login and 

query congestion are driven by capacity considerations, download attempt and download speed 

congestion are driven by free riding which is worsened by increased network size in our data. In 
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short, network performance may only be optimized through the use of managerial rules or 

policies that align user incentives with the desired outcome of the collective network. Analysis of 

such rules using both priced and non-priced incentives is a fruitful area for future research. 

A business implication of this study is that the value of the P2P network does not scale in the 

way that traditional networks, such as telecommunication networks, do. The value present in 

telecommunications networks is a function of the number of users where marginal value is 

increasing in network size. In contrast, the value in P2P networks is based on collective content 

and the marginal value of collective content is decreasing in the number of users. Because of 

this, P2P networks are unlikely to be “winner-take-all markets.” This suggests that network 

operators should adopt niche strategies based on features or content to maximize the value 

provided to their share of network users. 

The policy implication of this study is that P2P networks, in their current stage, follow the 

economic theory of private provision of public goods. Free riding exists and can decrease 

network scalability. Unless appropriate private incentives are implemented through managerial 

rules or pricing policies, the degree of free riding will eventually outweigh the benefit of having 

more users in the network. From a technological perspective, these observations stress the 

importance of incorporating economic-based managerial rules or pricing policies into protocol 

designs to align private user incentives with the goals of the collective network. 

It is important to note that our empirical results only apply to the centralized peer to peer 

architectures used in the OpenNap networks to provide consumer information goods. Future 

work should focus on extending our results to other context domains such as peer-to-peer 
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networks for information sharing within corporations or in other architectures such as Gnutella, 

Aimster, or Kazaa/Morpheus. 
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