
Gradual Security Types and Gradual Guarantees
Abhishek Bichhawat

Carnegie Mellon University
Pittsburgh, USA

abichhaw@andrew.cmu.edu

McKenna McCall
Carnegie Mellon University

Pittsburgh, USA
mckennak@andrew.cmu.edu

Limin Jia
Carnegie Mellon University

Pittsburgh, USA
liminjia@andrew.cmu.edu

Abstract—Information flow type systems enforce the security
property of noninterference by detecting unauthorized data flows
at compile-time. However, they require precise type annota-
tions, making them difficult to use in practice as much of
the legacy infrastructure is written in untyped or dynamically-
typed languages. Gradual typing seamlessly integrates static and
dynamic typing, providing the best of both approaches, and
has been applied to information flow control, where information
flow monitors are derived from gradual security types. Prior
work on gradual information flow typing uncovered tensions
between noninterference and the dynamic gradual guarantee—
the property that less precise security type annotations in a
program should not cause more runtime errors.

This paper re-examines the connection between gradual in-
formation flow types and information flow monitors to identify
the root cause of the tension between the gradual guarantees
and noninterference. We develop runtime semantics for a sim-
ple imperative language with gradual information flow types
that provides both noninterference and gradual guarantees. We
leverage a proof technique developed for FlowML and reduce
noninterference proofs to preservation proofs.

Index Terms—Information flow control, noninterference, grad-
ual typing, gradual guarantees

I. INTRODUCTION

Information flow type systems combine types and security
labels to ensure that well-typed programs do not leak secrets to
attackers at compile-time [1]. However, purely statically-typed
languages face significant adoption challenges. Most program-
mers are unfamiliar with and may be unwilling to use complex
information flow type systems. Moreover, much of the legacy
infrastructure is written in untyped and dynamically-typed
languages without precise security type annotations.

Gradual typing is one promising technique to address these
challenges [2]; it aims to seamlessly integrate statically-typed
programs with dynamically-typed programs. At a high-level,
gradual type systems introduce a dynamic type, often written
as ?, to accommodate untyped portions of the program. The
type system allows any program to be typed under ?. The
type system enforces type safety on statically typed parts and
the runtime semantics of gradual type systems monitor the
interactions between parts typed as ? and statically typed parts
to ensure type preservation.

Gradual typing has been applied to information flow
types [3]–[7], where certain expressions have a dynamic
security label ? (and are typed as, e.g., int?), which is
determined at runtime. Information flow monitors are then
derived from the runtime semantics of gradual information

flow types. Earlier adoptions of gradual typing to information
flow types have developed ad hoc approaches to treat “gradual
types”. For instance, Disney and Flanagan did not include a
dynamic security label [3]. Instead, the programmer would
insert type casts, which are checked at runtime, and are used
to “gradually” make the programs more secure. Later, ML-
GS [4] and LJGS [5] included the dynamic security label ? and
a runtime monitor that performed checks on the dynamically
typed parts of the program. Programmers still need to write
annotations and casts in ML-GS and label constraints in LJGS.
The dynamic label is instantiated as a single security label at
run time in both ML-GS and LJGS.

At the same time, interests in the formal foundations of
gradual types grew significantly. Formal properties related
to gradual typing such as the gradual guarantee [8] were
introduced, which says that loosening policies should not cause
more type errors or runtime failures. Roughly, the gradual
guarantee ensures that programs which type-check and run
to completion with precise type annotations will also type-
check and run to completion with less precise types, i.e., ?.
This property ensures that programmers are not punished for
not specifying type annotations if the program is safe. Such
a guarantee is important for information flow type systems,
as security annotations have been a road block for adoption.
Without the gradual guarantee, the programmers’ burden of
providing (unnecessary) security annotations is increased.

Garcia et al. developed the abstracting gradual typing (AGT)
framework which provides a formal interpretation of gradual
type systems [9]. In AGT, a principled interpretation of the
dynamic type is that it represents the set of all possible types
that are refined by the monitor to preserve type safety at
runtime. By that interpretation, the semantics of the dynamic
information flow label ? is the set of all possible labels. Early
work on gradual information flow typing all instantiate the
dynamic label as a single label at runtime [4], [5]. Recent
work by Toro et al., GSLRef , aims to apply the AGT framework
to information flow types [6]; however, it has to give up the
dynamic gradual guarantee in favor of noninterference, the key
information flow security property [10], when dealing with
mutable references.

In this paper, we re-examine the connection between grad-
ual information flow types and information flow monitors
(c.f. [11]–[13]). We aim to identify the root cause of the
tension between the dynamic gradual guarantee and security
in systems that refine the set of possible labels for dynamically



labeled programs at runtime. To this end, we focus on a simple
imperative language with first-order stores, which has been
widely used to design information flow control systems [1],
[13]–[17]. While simple, this language includes all the features
to illustrate the problem of refining dynamic labels at runtime.
We develop runtime semantics for this language with gradual
information flow types that enjoy both noninterference and the
dynamic gradual guarantee. We draw ideas from abstracting
gradual typing, which advocates deriving runtime semantics
for gradual types via the preservation proof [9].

We observe that as dynamic labels are updated, the seman-
tics that only gradually refine the possible security labels dur-
ing program execution resemble a naive flow-sensitive monitor
and therefore inherit the problems with implicit leaks of flow-
sensitive monitors [11]. To enforce noninterference and re-
move the implicit leaks caused by insecure writes in branches,
the runtime semantics needs to take into consideration the
variable and channel writes in the untaken branch [13]. Pure
guessing which ignores information about the untaken branch
like GSLRef ’s runtime yields rigid semantics that break the
gradual guarantee (more in Section III-D). The no-sensitive-
upgrade (NSU) check [11] also doesn’t solve the problem.
Instead, a “hybrid” approach [13], [17] that leverages static
analysis to obtain the write effects of the untaken branch and
upgrade relevant references for both branches can be used to
remove the implicit leaks and provide the gradual guarantees.

We leverage a proof technique developed for FlowML,
which reduces noninterference proofs to preservation
proofs [18]. The main idea is to extend the language
with pairs of expressions and commands, representing
two executions with different secrets in one program.
Noninterference follows from preservation. This proof
technique clearly illustrates the problem with purely dynamic
flow-sensitive monitors and naturally suggests the hybrid
approach [13], [17].

To summarize, we study the connection between gradual
security types and information flow monitors and identify
the conservative handling of implicit flows in GSLRef as the
reason that it gives up dynamic gradual guarantee in favor
of noninterference. Additionally, we show that the dynamic
gradual guarantee can be recovered by using a hybrid approach
that leverages the static phase to generate a list of variables that
are written to in both the branches. Due to space constraints,
we omit detailed definitions and proofs, which can be found
in the full version of the paper [19].

II. OVERVIEW OF INFORMATION FLOW CONTROL

In information flow control systems, variables are annotated
with a label from a security lattice, which have a partial-
ordering (4) and a well-defined join and meet operation.
`1 4 `2 means information can flow from `1 to `2. Consider
a two-point security lattice with labels {L,H} with L 4 H
where L represents public and H represents secret. A variable
x having type intH contains a sensitive integer value.

Information flows can be broadly classified as explicit or
implicit [10], [20]. Explicit flows arise from variable assign-

ments. For instance, the statement x = y + z causes an
explicit flow of values from y and z to x. Implicit flows arise
from control structures in the program. For example, in the
program l = false; if(h){l = true; }, there is an implicit
flow of information from h to the final value of l (it is true
iff h is true). Implicit flows are handled by maintaining a pc
(program-context) label, which is an upper bound on the labels
of all the predicates that have influenced the control flow thus
far. In the example, the pc inside the branch is the label of h.

Information flow control systems aim to prevent leaks
through these flows by either enforcing information flow
typing rules and ruling out insecure programs at compile-
time or dynamically monitoring programs and aborting the
execution of insecure programs. In both systems, assignment
to a variable is disallowed if either the pc label or the join of
the label of the operands is not less than or equal to the label
of the variable being assigned [1], [11]. Thus, in the above
examples, if either the label of y or z is greater than the label of
x or the label of h is greater than the label of l, the assignment
does not type-check or the execution aborts at runtime. This
guarantees a variant of noninterference, known as termination-
insensitive noninterference [1], which we prove for our gradual
type system. We assume that an adversary cannot observe
or gain any information if a program’s execution diverges or
aborts and can only observe “public” outputs by the program.

We consider a flow-insensitive, fixed-label system in this
paper and prove termination-insensitive noninterference for it.

III. GRADUAL SECURITY TYPING

Static information flow type systems do not scale up to
scenarios where the security levels of some of the variables are
not known at compile-time, while pure monitoring approaches
cannot reject obviously insecure programs at compile-time.
Gradual typing extends the reach of type-system based analy-
sis by adding an imprecise (or dynamic) label, ?, for variables
whose labels are not known at compile-time. The runtime
semantics then ensures that no information is leaked due to
the relaxation of the type-system’s handling of ? labels.

A. Imprecise Security Label: Interpretations and Operations

The label ? is not an actual element of the security lattice
and its meaning is not universally agreed upon. Differences
will manifest in the runtime monitoring semantics and proof
of noninterference. For illustration, consider a variable x of
type int?. Semantically, in the literature ? has meant one of
the following. (1) x’s label is dynamic (flow-sensitive) and can
change at runtime (e.g., from ? representing L to representing
H when x is assigned a secret). (2) the set of possible labels
for x is refined at runtime and the set in a future state will
be a subset of its the current state. Since we build on a flow-
insensitive type system, we opt for the second meaning of ?.
Our runtime monitor will keep track of the set of possible
labels for x. Note that a typical flow-sensitive IFC monitor
(e.g. [11], [13]) takes an approach aligned with (1).

In the initial program state, ? could be interpreted as: (1)
x could contain a secret or be observable to an adversary.



1 y := falseH

2 if (x) then y := trueH

Listing 1. Statically typed

1 y := false?

2 if (x) then y := true?

Listing 2. Dynamically typed

1 y := false?

2 z := falseL

3 if (x) then y := true?

4 if (y) then z := trueL

5 output(L, z)

Listing 3. NSU

1 y := true?

2 z := trueL

3 if (x) then y := false?

4 if (y) then z := falseL

5 output(L, z)

Listing 4. Implicit flows

Therefore, we should treat x conservatively as if it is both
secret and public. (2) ? indicates indifference; the data x
contains in the initial state is of no security value; otherwise,
x should have been given the label H . We choose (2) again,
as it is a cleaner interpretation. Note that this is only for the
initial state. At runtime, the monitor maintains enough state
to concretely know whether x contains a secret or not.

B. Gradually Refined Security Policy via Examples

Next, we describe how security labels can be gradually
refined at runtime. Consider the program in Listing 1 and its
variant with dynamic types in Listing 2. Suppose the lattice
contains four elements {⊥, L,H,>} such that ⊥ 4 L 4
H 4 >. Assume that the initial type of x is boolH in both
examples while the type of y is boolH in Listing 1 and bool?

in Listing 21. The program in Listing 1 does not leak any
information. With gradual typing, its variant in Listing 2 is
also accepted by the type system. The runtime refines the set
of possible labels for y as the program runs. With x : boolH ,
y cannot be ⊥ or L as that would result in an implicit flow.
Thus, the possible labels of y are refined to the set {H,>}
when x = true. If, suppose, x : boolL, then y is labeled
{L,H,>} after executing line 2.

Suppose the program in Listing 2 is extended with another
branch as shown in Listing 3 with z : boolL. When x :
boolL, the possible labels for y on line 4 are {L,H,>}. This
allows the assignment on line 4 to succeed as the assignment
is to a variable that has a label contained in the set of possible
pc labels. When x has the type boolH , then the possible
labels for y on line 4 are {H,>}. The assignment on line 4
is aborted as L is not equal or higher than any of the possible
pc labels ({H,>}). In this case, the monitor enforces NSU
and prevents the implicit leak.

C. Gradual Guarantees

Desirable formal properties for gradual type systems are the
gradual guarantees, proposed by [8]. The gradual guarantees
relate programs that differ only in the precision of the type
annotations. They state that changes that make the annotations
of a gradually typed program less precise should not change
the static or dynamic behavior of the program. In other words,
if a program with more precise type annotations is well-
typed in the static type system, and terminates in the runtime

1We will write x` to indicate that variable x has the type τ`.

semantics, then the same program with less precise terms is
also well-typed, and terminates, respectively.

For illustration, consider the previous example from List-
ing 1. Assume that the program is well-typed under a gradual
type system with x : boolH and y : boolH as secret
variables. When x is true, the branch on line 2 is taken and
y is assigned the value true and has the label H . When x is
false, y remains false. This program is accepted by the
security type system and dynamic information flow monitor,
and runs to completion in all possible executions. As per the
static gradual guarantee, the program should also be well-
typed if, for instance, y had an imprecise ? security level as
shown in Listing 2. By the dynamic gradual guarantee, the
program in Listing 2 should run to completion at runtime, even
with the imprecise label for y in all executions of the program.

The gradual guarantees are important in the context of
information flow systems to show that the gradual security
type system is strictly more permissive than the static security
type system and the dynamic IFC monitor, while providing the
same guarantees. They mean that programmers need not worry
about insufficient annotations causing their safe programs to
be rejected by the type system, or worse, at runtime, which
may lead to undesirable behavior. Concerning programmers
with unnecessary annotations defeats the purpose of gradual
typing, which is meant to alleviate the burden of annotation.

D. Implicit Flows vs. Dynamic Gradual Guarantee

The example in Listing 4 illustrates how gradual typing
semantics handle implicit flows. Assume that x : boolH is
a secret variable while the security types of y : bool? and
z : bool? are unknown at compile-time, and the security lattice
is ⊥ 4 L 4 H 4 >. Consider two runs of the program with
different initial values of x. When x is true, the branch on
line 3 is taken and y is assigned the value false. With gradual
typing, the labels of y are refined to {H,>}. As y is false, the
branch on line 4 is not taken and z remains true with the set
of labels {⊥, L,H,>}. As z’s value is visible at L, the output
on line 5 succeeds. When x is false, the branch on line 3 is not
taken and y remains true with the set of labels {⊥, L,H,>}.
As the pc on line 4 contains the set of labels {⊥, L,H,>},
the assignment on line 4 succeeds, and z becomes false while
the set of labels remains {⊥, L,H,>}. Again, as z’s value
is visible at L, the output on line 5 succeeds. Thus, in the
two runs of the program, different values of z are output for
different values of x, thereby leaking x to the adversary at
level L. Here, the NSU mechanism does not apply, as the
assignment to y on line 3 is merely refining, not “upgrading”,
the label of y. If y’s label had been L, this program would
have been rejected.

This program can be rejected by deploying a special mon-
itoring rule that preemptively aborts an assignment statement
if there is a possibility that the pc is not lower than or equal to
the variable’s label, as deployed by GSLRef [6]. In the above
example, the assignment on line 3 will be aborted, because
the pc is H , and y’s label could be ⊥ or L, which might leak
information. This ensures noninterference, but unfortunately,



1 y := true?

2 if (x) then y := false?

3 output(H , y)

Listing 5. Secure program violating gradual guarantee

the extra check does not retain the dynamic gradual guarantee.
That is, enlarging the set of possible labels for the dynamic
security type of y will cause the monitor to abort, which
contradicts the dynamic gradual guarantee.

Consider the program in Listing 5 with the same security
lattice as before such that the variable x is labeled H and y’s
label is not specified at compile-time. As the pc on line 2 is H
and the possible set of labels of y on line 2 is {⊥, L,H,>},
the monitor aborts the execution of the program when x is true
to satisfy noninterference. However, if y was labeled H or >
at compile-time instead of being ?, the execution would have
proceeded and output the value of y to H . In other words, the
larger set of possible labels for y on line 2 (because of the
unknown label) causes the monitor to abort while the precisely
typed version of the program with y : boolH is accepted by
the monitor, which violates the dynamic gradual guarantee.

To tackle this problem, we leverage the static phase of the
gradual type system to determine the set of variables being
written to in different branches and loops, and refine their
possible security labels to implement a monitoring strategy
that preserves the dynamic gradual guarantee. At the branch
on line 2 in Listing 5, we know that y may be written to inside
the branch, therefore, we narrow the possibility of the labels
for y to {H,>} as the first step of executing the if statement,
regardless of whether x is true or false. This is very similar to
how hybrid monitors stop implicit leaks [13], [17], [21], [22].
We will discuss this further in Section IV-C.

IV. A LANGUAGE WITH GRADUAL SECURITY TYPES

The syntax and typing rules for the language with gradual
security types (WHILEG) are standard and provided in the full
version of the paper [19]. In this section, we present the syntax
and typing rules for our language with gradual information
flow types and evidence (WHILEG

Evd), define the translation
from WHILEG to WHILEG

Evd, and explain the operational
semantics for our monitor.

A. WHILEG
Evd

The syntax of WHILEG
Evd is shown in Fig. 1. Gradual types,

U , consist of a type (bool, or int) and a gradual security label,
g. This label is either a static security label, denoted `; or an
imprecise dynamic label, denoted ?. As is standard, ` is drawn
from Labs , a set of labels, which is a part of a security lattice
L = (Labs,4). Here 4 is a partial order between labels in
Labs . We commonly use the label H to indicate secret, L to
indicate public data, and L 4 H .

The partial-ordering (4) and join operation (g) on security
labels (`) extends to consistent ordering (4 c) and consistent-
join (gc) to account for ?, as shown in Fig. 2. The consistent
subtyping relation is written as τg1 ≤ c τg2 .

Labels ` ::= L | . . . |H
Label-intervals ι ::= [`low, `high]
Raw values u ::= n | true | false
Values v ::= (ι u)g

Types τ ::= bool | int
Gradual labels g ::= ? | `
Gradual types U ::= τg

Typing Context Γ ::= · |Γ, x : U
Cast evidence E ::= (ι1, ι2)
Expressions e ::= x | v | e1 bop e2 |Eg e
Variable Set X ::= {x1, . . . , xn}
Commands c ::= skip | c1; c2 |x := e | output(`, e)

| ifXe then c1 else c2 |whileXe do c

Fig. 1. Syntax for the language WHILEG
Evd

`1 4 `2
`1 4 c `2 ? 4 c g g 4 c?

g1 4 c g2

τg1 ≤ c τ
g2

`1 gc `2 = `1 g `2

g 6= >
? gc g = ?

g 6= >
g gc ? = ?

? gc > = > > gc ? = >

Fig. 2. Operations on gradual labels and types

Recall that examples in Section III-A use a set of possi-
ble security labels for preventing information leaks. This is
evidence attesting to the validity of gradual labels. We use
an interval of labels, representing the lowest and the highest
possible label, as the refinement only narrows the interval,
similar to GSLRef [6].

There are two types of evidence: a label-interval, ι, that
justifies the dynamic label ?; and a pair of intervals or the cast
evidence, E=(ι1, ι2), that justifies the consistent subtyping
relation between two gradual types used in casts. Intuitively, ι
represents the range of possible static labels that would allow
the program to type-check. For static labels `, the evidence is
[`, `]. An interval [`l, `r] is valid iff `l 4 `r. The rest of the
paper only considers valid intervals. Operations leading to an
invalid interval are aborted.

A value in WHILEG
Evd is a raw value with an interval of

possible security labels for the gradual label. Raw values are
integer constants n, or boolean values. Expressions include
values, variables, casts, and binary operations on expressions.
An explicit type cast is written Eg e, where E is the evidence
justifying the type cast and g is the label of the resulting type.

Commands include skip, sequencing, assignments,
branches, loops, and outputs. This language does not have
higher-order stores, so the left-hand side of the assignment
is always a global variable. The output command outputs a
value at a fixed security label `. We include this command
mainly to have a clear statement of the system’s observable
behavior, so we do not allow output at the imprecise label
?. To prevent implicit leaks, we include a write-set of
variables, X , which takes into account variable writes in both
conditional branches and the loop body.

Label-interval operations: We first define functions and op-



γ(?) = [⊥,>] γ(`) = [`, `]

`l 4 `r
valid([`l, `r])

`2 4 `1 `′1 4 `
′
2

[`1, `
′
1] v [`2, `

′
2]

`′1 4 `2
[`1, `

′
1] 4 [`2, `

′
2]

`1l 4 `1r f `2r `2l g `1l 4 `2r
refine([`1l, `1r], [`2l, `2r]) = ([`1l, `1r f `2r], [`2l g `1l, `2r])

(`1l 64 `1r f `2r) ∨ (`2l g `1l 64 `2r)

refine([`1l, `1r], [`2l, `2r]) = undef

ι1 = [`1, `
′
1] ι2 = [`2, `

′
2]

ι1 g ι2 = [`1 g `2, `
′
1 g `

′
2]

ι1 v γ(g1) ι2 v γ(g2) g1 4 c g2

(ι1, ι2) ` τg1 ≤ c τ
g2

ι1 = [`1l, `1r] ι2 = [`2l, `2r]

ι1 ./ ι2 = [`1l g `2l, `1r f `2r]

ι′′ = (ι′ ./ ι) ι′′ v γ(g)

ι′ ./ (ι u)g = (ι′′ u)g
refine(ι1 ./ ι, ι2) = (ι′1, ι

′
2)

ι ./ (ι1, ι2) = ι′2

refine(ι1 ./ ι, ι2) = undef

ι ./ (ι1, ι2) = undef

Fig. 3. Label and label-interval operations

erations on the label-intervals that are used by the typing rules
and operational semantics (shown in Fig. 3). The function γ(g)
returns the maximum possible label-interval for the gradual
label g, assuming ⊥ and > are the least and the greatest
element in the lattice, respectively. Label-intervals form a
lattice with the partial ordering defined as ι1 v ι2. Here,
ι1 is said to be more precise than ι2. The label-intervals are
refined throughout the execution of the program; i.e., they get
more precise. Consider the example in Listing 3. Assume that
the security lattice contains two elements L and H such that
L 4 H . Initially, y has a label ? with the evidence [L,H]
indicating that any of the two labels are possible. If x : boolH ,
then the only possible label for y that allows assignment on
line 3 is H . Thus, the evidence for the label on y is refined to
[H,H], which makes the program-context’s evidence on line 4
[H,H], disallowing assignments to L-labeled variables.

We define ι1 4 ι2 to mean for every security label in
ι1, all labels in ι2 are at higher or equal positions in the
security lattice; and for every security label in ι2, all labels
in ι1 are at lower or equal positions in the security lattice.
Even though this relation is not used in our typing rules or
operational semantics, it is an invariant that must hold on
the results of the binary label-interval operations used by the
noninterference proofs. The function refine(ι1, ι2) returns the
largest sub-intervals of ι1 and ι2 (ι′1 and ι′2, respectively) such
that ι′1 4 ι′2. If the relation does not hold between ι′1 and ι′2,
the function returns undef.

The join of label-intervals is defined as ι1 g ι2. Note that
this is not to be confused with the join operation in the lattice
that the intervals form. The join of the label-intervals computes
the interval corresponding to all possible joins of security
labels in those intervals. The operation ι1 ./ ι2 computes the
intersection of the intervals ι1 and ι2. ι′ ./ (ι u)g merges
the labels for a value. ι ./ (ι1, ι2) refines ι2 based on the
intersection of ι and ι1.

Evidence-based consistent subtyping: Next, we define con-
sistent subtyping relations for both gradual labels and types as
supported by label-intervals. The consistent subtyping relation
between two gradual types is written as (ι1, ι2) ` τg1 ≤ c τg2
(defined in Fig. 3). In this relation, ι1, resp. ι2 represents
the set of possible labels for g1, resp. g2, and g1 4 c g2.

The evidence (ι1, ι2) is to justify the consistent security label
partial ordering relation between the labels of the gradual
types. Note that we do not have ι1 4 ι2 in the premise. The
reason is that (ι1, ι2) ` τg1 ≤ c τg2 is used to type runtime
terms; even though ι1 4 ι2 holds initially, as label-intervals
are refined from ιi to ι′i, we cannot guarantee that ι′1 4 ι

′
2 hold.

This will break preservation proofs. It is not the gradual type
system’s job to ensure all execution paths are secure. Instead,
the runtime semantics will refine the intervals and abort the
computation if necessary when a term is evaluated.

Typing rules: Expressions and commands with evidence are
typed using rules shown in Fig. 4.

G-CAST casts an expression of type U1 to U2, if the cast
evidence E shows that U1 is a consistent subtype of U2.

We augment the command typing with an interval for the
gradual pc label; ιpc is the range of possible static labels for
the gpc . The rules are similar to the ones in the original type-
system except for the use of evidence for consistent ordering
between the gradual labels. An exception is the use of WtSet(c)
that returns the set of variables being updated or assigned to in
the command c. WtSet is straightforwardly inductively defined
over the structure of c and is shown below:

WtSet(skip) = ∅ WtSet(output(`, e)) = ∅
WtSet(x := e) = {x} WtSet(while e do c) = WtSet(c)
WtSet(c1; c2) = WtSet(c1) ∪WtSet(c2)
WtSet(if e then c1 else c2) = WtSet(c1) ∪WtSet(c2)

Further, G-ASSIGN and G-OUT do not consider expression
subtyping and instead rely on the casts inserted by translation.

B. From WHILEG to WHILEG
Evd

The programs are written in WHILEG, the language without
evidence, which is then translated to WHILEG

Evd. The ex-
plicit casts for ASSIGN and OUT are automatically inserted
to account for the subtyping of expressions. We show the
interesting rules for translating WHILEG expressions and
commands to WHILEG

Evd with evidence insertion in Fig. 5.
T-ASSIGN inserts a cast for the expression e to have the same
label as that of x. For example, xL := y? is rewritten to
x := (refine([⊥,>], [L,L])L)y. Similarly, T-OUT casts the
expression e to the channel level `.



Γ ` e : U

ι v γ(g)

Γ ` (ι u)g : Γ(u)g
G-CONST

Γ ` x : Γ(x)
G-VAR

∀i ∈ {1, 2}, Γ ` ei : τgi

g = g1 gc g2
Γ ` e1 bop e2 : τg

G-BOP

Γ ` e : τg1

E ` τg1 ≤ c τg

Γ ` Eg e : τg
G-CAST

Γ; ιpc gpc ` c

Γ; ιpc gpc ` skip
G-SKIP

Γ ` e : boolg X = WtSet(c) ιc = γ(g) Γ; ιpc g ιc gpc gc g ` c
Γ; ιpc gpc ` whileX e do c

G-WHILE

Γ; ιpc gpc ` c1
Γ; ιpc gpc ` c2

Γ; ιpc gpc ` c1; c2
G-SEQ

Γ ` x : τg Γ ` e : τg

ιpc v γ(gpc) gpc 4 c g

Γ; ιpc gpc ` x := e
G-ASSIGN

Γ ` e : τ ` ιpc v γ(gpc) gpc 4 c `

Γ; ιpc gpc ` output(`, e)
G-OUT

Γ ` e : boolg ιc = γ(g) X = WtSet(c1) ∪WtSet(c2) ∀i = {1, 2}, Γ; ιpc g ιc gpc gc g ` ci
Γ; ιpc gpc ` ifX e then c1 else c2

G-IF

Fig. 4. Typing rules for WHILEG
Evd. Γ(u) maps a constant to its type (e.g. n to int, and true to bool)

.

Γ ` e e′ : U

ι = γ(g)

Γ ` bg  (ι b)g : boolg
T-BOOL

ι = γ(g)

Γ ` ng  (ι n)g : intg
T-INT

Γ(x) = τg

Γ ` x x : τg
T-VAR

∀i ∈ {1, 2}, Γ ` ei  e′i : τgi

g = g1 gc g2
Γ ` e1 bop e2  e′1 bop e′2 : τg

T-BOP

Γ ` e e′ : τg1 g1 4 c g
(ι1, ι2) = refine(γ(g1), γ(g))

Γ ` (e :: τg) (ι1, ι2)g e′ : τg
T-CAST

Γ; gpc ` c c′

Γ(x) = τg Γ ` e e′ : τg
′

g′ 4 c g (ι1, ι2) = refine(γ(g′), γ(g))

Γ; gpc ` x := e x := (ι1, ι2)g e′
T-ASSIGN

Γ ` e e′ : τg g 4 c `
(ι1, ι2) = refine(γ(g), γ(`))

Γ; gpc ` output(`, e) output(`, (ι1, ι2)g e′)
T-OUT

Γ ` e e′ : boolg Γ; gpc gc g ` c c′

X = WtSet(c′)

Γ; gpc ` while e do c whileX e′ do c′
T-WHILE

Γ ` e e′ : boolg Γ; gpc gc g ` c1  c′1
Γ; gpc gc g ` c2  c′2 X = WtSet(c′1) ∪WtSet(c′2)

Γ; gpc ` if e then c1 else c2  ifX e′ then c′1 else c′2
T-IF

Fig. 5. Translation from WHILEG to WHILEG
Evd

The other interesting translation rules are T-IF and T-
WHILE, which insert a write-set X that includes the set of
all variables that might be written to in both the branches and
the loop body. We prove that any well-typed term in WHILEG

is translated to another well-typed term in WHILEG
Evd.

C. Operational Semantics

Runtime constructs: We define additional runtime constructs
for our semantics, shown below. The store, δ, maps variables
to values with their gradual labels and intervals. The gradual
labels of the variables are suffixed on the values for the

purpose of evaluation. κ is a stack of pc labels, each of which
is a gradual label, gpc , with the corresponding interval, ιpc .

Store δ ::= · | δ, x 7→ v
PC Stack κ ::= ∅ | (ιpc gpc) |κ1 B κ2
Actions α ::= · | (`, v)
Commands c ::= · · · | {c} | if e then c1 else c2

The stack is used for evaluating nested if statements. The
operation κ1 B κ2 indicates that κ1 is on top of κ2 in the
stack. α is an action, which may be silent or a labeled output.
We add two runtime commands. {c} is used in evaluating if
statements. The curly braces help the monitor keep track of



δ / e ⇓ v

δ / (ι u)g ⇓ (ι u)g
M-CONST

δ / x ⇓ δ(x)
M-VAR

∀i ∈ {1, 2}, δ / ei ⇓ (ιi ui)
gi

ι = ι1 g ι2 g = g1 gc g2 u = u1 bop u2

δ / e1 bop e2 ⇓ (ι u)g
M-BOP

δ / e ⇓ (ι u)g ι′ = ι ./ E

δ / Eg
′
e ⇓ (ι′ u)g

′ M-CAST

δ / e ⇓ (ι u)g ι ./ E = undef

δ / Eg
′
e ⇓ abort

M-CAST-ERR

Fig. 6. Monitor semantics for expressions

the scope of a branch. The if statement without the write set
is used in an intermediate evaluation state.

Expression monitoring semantics: Our monitoring semantics
for expressions is of the form δ / e ⇓ e′ as shown in Fig. 6.
Rules M-CONST and M-VAR are standard. To perform a
binary operation on two values, the operation is performed on
the raw values, and the join of their associated intervals and
gradual labels is assigned to the computed value. M-CAST
refines a value’s interval according to the cast evidence. If the
refinement is not valid, the execution aborts (M-CAST-ERR).
Note that none of these operations modify the gradual label
of the variable (the type of store locations remain the same);
the operations only refine the intervals of the gradual label.

Commands monitoring semantics: Our monitoring seman-
tics for commands is summarized in Fig. 7 and has the form
κ, δ / c

α−→ κ′, δ′ / c′. Additional set of rules where the
monitor aborts can be found in Fig. 16 in the Appendix. Rules
M-PC and M-POP manage commands running in branches
or loops. M-POP pops the top-most pc label from the stack,
indicating the end of the branch or loop. We use braces around
a command, {c} to indicate that c is executing in a branch
or loop. Such a command is run taking into account only
the specific branch’s pc stack. When the command execution
finishes, the braces are removed and the current pc label is
popped off the stack.

Rule M-ASSIGN updates the label-interval of the value
being assigned based on the assignment’s context ιpc to pre-
vent information leaks. The resulting label-interval is further
restricted using the existing label-interval of the variable to
ensure that we only refine the set of possible labels. The
function intvl (v) returns the label-interval of v. Formally:

intvl ((ι u)g) = ι

The function refineLB refines the lower bound of a value’s
label-interval and raises it based on the interval ιpc . The updL
function is defined in Fig. 8 and uses the interval restrictLB
operation. We raise the lower bound of the existing interval

κ, δ / c
α−→ κ′, δ′ / c′

κ, δ / c1
α−→ κ′, δ′ / c′1

κ, δ / c1; c2
α−→ κ′, δ′ / c′1; c2

M-SEQ

κ, δ / c
α−→ κ′, δ′ / c′

κB ιpc gpc , δ / {c}
α−→ κ′ B ιpc gpc , δ

′ / {c′}
M-PC

ιpc gpc B κ, δ / {skip} −→ κ, δ / skip
M-POP

κ, δ / skip; c −→ κ, δ / c
M-SKIP

δ / e ⇓ v v′ = refineLB(ιpc , v)
v′′ = updL(intvl (δ(x)), v′)

ιpc gpc , δ / x := e −→ ιpc gpc , δ[x 7→ v′′] / skip
M-ASSIGN

δ / e ⇓ v v′ = refineLB(ιpc , v)
v′′ = updL(intvl (δ(x)), v′)

ιpc gpc , δ / output(`, e)
(`,v′′)−→ ιpc gpc , δ / skip

M-OUT

ι′pc = ιpc g ι g′pc = gpc gc g
ci = c1 if b = true ci = c2 if b = false

ιpc gpc , δ / if (ι b)g then c1 else c2 −→
ι′pc g

′
pc B ιpc gpc , δ / {ci}

M-IF

δ / e ⇓ v δ′ = rfL(δ,X, ιpc g intvl (v))

ιpc gpc , δ / ifX e then c1 else c2 −→
ιpc gpc , δ

′ / if v then c1 else c2

M-IF-REFINE

ιpc gpc , δ / whileX e do c −→ ιpc gpc , δ /

ifX e then (c;whileX e do c) else skip

M-WHILE

Fig. 7. Monitor semantics for commands

based on the interval of the newly computed value. Note
that restrictLB differs from refine in the upper-bound of the
computed interval. If either of these functions return an invalid
interval, the execution aborts. The interval need not be checked
against the reference’s label-interval because the inserted cast
would have ruled out unsafe programs earlier. Consider the
following program, where δ = [x 7→ ([L,L] 3)L, y 7→
([H,H] 5)H ]

x := ([⊥,>], [L,L]) ([H,H], [⊥,>]) y

This program tries to cast an H value to ?, then
back to L, which is accepted by the type system.
The expression to be assigned to x is first evalu-
ated to ([⊥,>], [L,L]) ([H,H], [⊥,>]) ([H,H] 5)H , then to
([⊥,>], [L,L]) ([H,H] 5)H , then aborts, because [H,H] ./
([⊥,>], [L,L]) evaluates to refine([H,H], [L,L]) = undef.



refine(ιc, ι) = ( , ι′)

refineLB(ιc, (ι u)g) = (ι′ u)g rfL(δ, ·, ι) = δ

δ′ = rfL(δ,X, ι) v′ = refineLB(ι, v) 6= undef

rfL((δ, x 7→ v), (X,x), ι) = δ′, x 7→ v′

`1l g `2l 4 `1r
restrictLB([`1l, `1r], [`2l, `2r]) = [`1l g `2l, `1r]

updL(ιo, (ιn un)g) = (restrictLB(ιo, ιn)un)g

Fig. 8. Label-interval operations for the monitor

We explain the assignment rule via examples. Consider a
three-point lattice L 4 M 4 H , the following command
x := [H,H] 5?, and two stores δ1 = x 7→ [M,H] 1? and
δ2 = x 7→ [L,M ] 2?. Assume the following current pc-interval
ιpc = [L,H]. Here, v = [H,H] 5?. The second premise
further refines the interval of v to make sure that the pc
context is lower than or equal to the interval of the value to be
written. This is to prevent low assignments in a high context.
For this example, refine([L,H], [H,H]) = ([L,H], [H,H]),
so the intervals remain the same. Next, we narrow down the
possible label set using the existing value’s interval. This is to
adhere to our design choice that we do not change the type
of the variables and only narrow down the label choices (Sec-
tion III-A). For δ1, v′′ = [H,H] 5?, so now x stores a secret
value with label H . For store δ2, restrictLB([L,M ], [H,H])
is not defined and the monitor aborts.

When the old value in the store has a label-interval that
is lower than the label-interval of the new value to be
stored, the monitor aborts; for instance, under the store where
x 7→ ([L,L]0)?, the monitor aborts the execution of x :=
([H,H]1)?, as restrictLB([L,L], [H,H]) is not defined. This
is also consistent with our design choice to only refine the
label set, not update it.

M-OUT makes similar comparisons as M-ASSIGN to ensure
that the output is permitted. Rule M-IF is standard. The pc
label is determined by joining the current pc with the gradual
label and interval of the branch-predicate’s value. Here, the pc
stack grows and the branch is placed in the scoping braces. The
rule for while reduces it to if. Rule M-IF-REFINE is the
key for preventing implicit leaks. We refine the intervals for
variables in both branches according to the write set, X , which
contains the set of all variables being updated in either one of
the two branches. Fig. 8 includes the auxiliary definitions for
refining the intervals of variables in a write set. The function
rfL refines the label-interval of values in the store and is
defined inductively. Here, it is used to refine the intervals of
the variables in the write set to be at least as high as the lower
label in the interval of the current pc. When the functions rfL
return undef, the execution aborts.

Example: Below, we define two initial memories, δt maps x

to true and δf maps x to false. Both y and z store true initially
with y’s label being ? and z being L such that L v H .

δy = y 7→ [L,H]true?

δz = z 7→ [L,L]trueL

δt = x 7→ [H,H]trueH

δf = x 7→ [H,H]falseH

c1 = if{y} x then y := [L,H]false? else skip

c2 = if{z} y then z := [L,L]falseL else skip

Below is the execution starting from the state where x is true.

[L,L] L, (δt, δz, δy) / c1; c2
−→[L,L] L, (δt, δz, y 7→ [H,H]true?) /

if x then y := [L,H]false? else skip; c2
−→[H,H] H B [L,L] L, (δt, δz, y 7→ [H,H]true?) /

{y := [L,H]false?}; c2
−→[H,H] H B [L,L] L, (δt, δz, y 7→ [H,H]false?) /

{skip}; c2
−→[H,H] H B [L,L] L, (δt, δz, y 7→ [H,H]false?) /

skip; c2
−→[L,L] L, (δt, δz, y 7→ [H,H]false?) / c2
−→abort

In the last step, rfL fails, because the operation
refine([H,H], [L,L]) produces an invalid label-interval. Now
let’s see the execution starting from x 7→ false.

[L,L] L, (δf , δz, δy) / c1; c2
−→[L,L] L, (δf , δz, y 7→ [H,H]true?) /

if x then y := [L,H]false? else skip; c2
−→[H,H] H B [L,L] L, (δf , δz, y 7→ [H,H]true?) /

{skip}; c2
−→[H,H] H B [L,L] L, (δf , δz, y 7→ [H,H]true?) /

skip; c2
−→[L,L] L, (δf , δz, y 7→ [H,H]true?) / c2
−→abort

Notice that the label-intervals of y are changed the same
way as when we start the execution from δt. Ultimately, the
program aborts for the same reason.

V. NONINTERFERENCE

To prove noninterference, we extend WHILEG
Evd with pairs

of values, expressions, and commands to simulate two execu-
tions which differ on secret values. This allows us to reduce
our noninterference proof to a preservation proof [18].

A. Paired Execution

Syntax: The augmented syntax with pairs is shown below.

Values v ::= (ι u)g | 〈ι1 u1 | ι2 u2〉g
Cmd. c ::= · · · | 〈κ1, ι1, c1 |κ2, ι2, c2〉g

The store δ is extended to contain pairs of values. We also
extend commands to be paired but do not allow pairs to be
nested; an invariant maintained by our operational semantics.
We only use pairs for values and commands whose values and
effects are not observable by the adversary (are “high”). Pairs
of commands are part of the runtime statement, generated as



Expression Semantics: δ /i e ⇓ v

δ /i (ι u)g ⇓ (ι u)g
P-CONST

δ /i x ⇓ rdi δ(x)
P-VAR

δ /i e ⇓ v v′ = (E, g)B v

δ /i E
g e ⇓ v′

P-CAST

Command Semantics: κ, δ /i c
α−→ κ′, δ′ /i c

′

κi B ιpc g ιi gpc gc g, δ /i ci
α−→

κ′i B ιpc g ιi gpc gc g, δ
′ /i c

′
i

cj = c′j κj = κ′j {i, j} = {1, 2}
ιpc gpc , δ / 〈κ1, ι1, c1 |κ2, ι2, c2〉g

α−→
ιpc gpc , δ

′ / 〈κ′1, ι1, c′1 |κ′2, ι2, c′2〉g

P-C-PAIR

cj = c1 if u1 = true cj = c2 if u1 = false
ck = c1 if u2 = true ck = c2 if u2 = false

ιpc gpc , δ / if 〈ι1 u1 | ι2 u2〉g then c1 else c2 −→
ιpc gpc , δ / 〈∅, ι1, cj | ∅, ι2, ck〉g

P-LIFT-IF

ιpc gpc , δ / 〈∅, ι1, skip | ∅, ι2, skip〉g −→
ιpc gpc , δ / skip

P-SKIP-PAIR

δ /i e ⇓ v v′ = refineLB(ιpc , v)

ιpc gpc , δ /i x := e −→
ιpc gpc , δ[x 7→ updi δ(x) v′] /i skip

P-ASSIGN

δ /i e ⇓ v
v′ = refineLB(ιpc , v) v′′ = updL [`, `] v′

ιpc gpc , δ /i output(`, e)
(i,`,v′′)−→ ιpc gpc , δ /i skip

P-OUT

Fig. 9. Selected rules of paired executions

a result of evaluating a branching statement. Each command
represents an independent execution, capable of changing its
own pc stack. As a result, we include local pc stacks in the
pair with each command. The rationale behind additional pc
stacks in command pairs is explained with the semantics.

Label-interval operations on pairs: The interval of a paired
value is a pair of intervals, defined below.

intvl (〈ι1 u1 | ι2 u2〉g) = 〈ι1 | ι2〉

The intersection of an interval and a paired value is defined as
follows. Other extensions to label-interval operations can be
found in the full version of the paper [19].

ι ./ 〈ι1 u1 | ι2 u2〉g = 〈ι ./ ι1 u1 | ι ./ ι2 u2〉g

Memory read and update operations: As we allow the
intervals of values to be refined, the store read (rd) and update
(upd) operations for paired values need to make sure that the
correct paired value is read or updated. These functions are
shown in Fig. 17 in the Appendix.

Operational semantics for pairs: The operational semantics
are augmented with an index, i. The judgments now are of
the form δ /i e ⇓ e′ and κ, δ /i c −→ κ′, δ′ /i c

′. The index i
indicates which branch of a pair is executing (when i ∈ {1, 2})
or if it is a top-level execution (when i is omitted). Most of the
rules can be directly obtained by adding the i to the monitor
semantics shown in Fig. 6 and 7. Rules that deal with pairs,
including read and write to the store need to be modified. We
explain important rule changes (shown in Fig. 9).

Rule P-VAR uses the function rdi v to retrieve the value
indexed by i within v. To evaluate a cast over a pair of values,
we push the cast inside the pair (P-CAST).

Each command in the pair (P-C-PAIR) can make progress
independently and the premise of the rule is indexed by the
corresponding i. Here κi is the pc stack specific to ci. Consider
a command c = 〈c1 | c2〉, where both c1 and c2 have nested
if statements. The execution of c will create different κ1 and
κ2 when executing c1 and c2. Next, ιi is the pc label-interval
demonstrating that c is supposed to execute in a “high” context
(unobservable by the adversary). The bottom pc in the stack
is joined with ιi. We will come back to this point when
explaining the typing rules.

Rule P-LIFT-IF lifts the pair that appears as branch condi-
tions to generate a paired command. The resulting commands
on each side of the pair are determined by the value in the
corresponding side of the branch condition. The branching
context ιi is the runtime interval of the branching condition.
The initial local pc stack is empty.

Note that the individual branches do not contain pairs of
commands. The only rule that generates paired command is P-
LIFT-IF. To see how the semantics prevent nesting command
pairs and how paired execution represents low runs with
different secrets, consider the program in Listing 6. Assume
that a and b are variables containing paired values such that
a = 〈ua1 |ua2〉H and b = 〈ub1 |ub2〉H , meaning both a and
b contain secrets and ua1 and ub1 are values for the first
execution and ua2 and ub2 are for the second. We ignore
the intervals in this example for simplicity of exposition. On
line 1, we use the P-LIFT-IF rule since we branch on a pair
of values to create paired commands. In the first execution,
if ua1 = true, we take the then branch. When evaluating
b inside the branch we take the first part of the pair using
the expression evaluation rules and rdi operation (Fig. 17) for
i = 1, i.e., rd1 b = bbc1 = ub1. Thus, the branch on line 2
becomes: if ub1 then . . . while the remaining parts remain the
same. Similarly in the second execution, based on the value
of ua2, either the then branch or the else branch is chosen.
If the then branch is chosen, the branch on line 2 becomes
if ub2 then . . . as we are in the second execution of the branch
(i = 2) on line 1 and rd2 b = bbc2 = ub2. Generating two
different runs of the program is sufficient for reasoning about
noninterference, which is what the projection semantics do.

Local pc refinements in pairs are forgotten when both sides
of the pair finish executing in P-SKIP-PAIR. This is similar to
the P-POP rule where pc for the branch or loop is forgotten.

Rule P-ASSIGN deals with the complexity of pairs updating



1 if a then
2 if b then y := [⊥,>]1?

3 else skip
4 else y := [⊥,>]2?

Listing 6. Example program to explain branching on pairs

the store in one branch with the helper function updi vo vn
(defined in Fig. 17). The refinement of labels during store
updates is the same as the monitor semantics. When the update
comes from a specific branch of execution (i ∈ {1, 2}), the
value for the other branch should be preserved. If the value
in the store is already a pair, only the ith sub-expression is
updated. Reconsider the example in Listing 6. The assignment
on line 2 happens in either of the two branches, or both the
branches depending on the values of ua1 to ub2. If it happens
in only the first projection, the first part of the value-pair in y is
updated. Suppose that y = 〈[H,>]0 | [H,>]42〉?, initially, and
ua1 = ub1 = true. Then, the value of y after the assignment
on line 2 becomes y = 〈[H,>]1 | [H,>]42〉?. If ua2 = false,
then the else branch is taken, and at the end of the assignment
on line 4 the value of y is updated to y = 〈[H,>]1 | [H,>]2〉?.
The first part of the pair is already updated through the then
branch as we evaluate the two runs one after the other when
branching on a pair of values.

If the store value is not a pair, the value becomes a pair
where the ith sub-expression is the updated value, and the
other sub-expression is the old value. Considering the same
example as above, if initially y = ([H,>]42)?, then at the
end of then branch with ua1 = true, the updated value of
y is y = 〈[H,>]1 | [H,>]42〉?. When updates happen at the
top-level, the entire value in the store should be updated. The
first rule applies when either the old or the new value is a pair
and the second rule applies when none of them are pairs. Note
that this is the reason why the intervals in a pair may differ.

The output rule is mostly the same. The event being output
now includes the index to aid the statement and proof of
noninterference. The P-IF-REFINE rule (for M-IF-REFINE)
uses an augmented version of rfL, which only refines label-
intervals for the ith branch.

B. Semantic Soundness and Completeness

To connect the semantics of the extended language with
pairs to the monitor semantics, we prove soundness and com-
pleteness theorems. These theorems depend on projections of
the store, expression- and command-configurations. Similar to
the value projection seen before, the goal of these projections
is to obtain one execution from a paired execution.

The projection of a paired value, a paired interval, a normal
value and interval are straightforward and defined in Fig. 17.
The projection of stores (δ) and traces (T) is inductively
defined as shown in Fig. 10. The projection function only
keeps the output events produced by the execution of concern
and ignores output performed by the other execution. The
projection function for expression configurations is bδ / eci =
bδci / e and for command configurations is defined in Fig. 10.

Store projection:

b·ci = · bδ, x 7→ vci = bδci, x 7→ bvci

Trace projection:

b·ci = ·
bT, (`, v)ci = bTci, (`, bvci)
bT, (j, `, v)ci = bTci, (`, v) if i = j
bT, (j, `, v)ci = bTci if i 6= j

Command-configuration projection:

bιpc gpc , δ / skipci = ιpc gpc , bδci / skip

bκ, δ / c1ci = κ′, δ′ / c′1
bκ, δ / c1; c2ci = κ′, δ′ / c′1; c2

bιpc gpc , δ / x := eci = ιpc gpc , bδci / x := e

bκ, δ / cci = κ′, δ′ / c′

bκB ιpc gpc , δ / {c}ci = κ′ B ιpc gpc , δ
′ / {c′}

bιpc gpc , δ / output(`, e)ci = ιpc gpc , bδci / output(`, e)

∀{i, j} ∈ {1, 2}, c′i =

{
skip if ci = skip and cj 6= skip
{ci} else

bιpc gpc , δ / 〈κ1, ι1, c1 |κ2, ι2, c2〉gci =
κi B (ιpc g ιi) (gpc gc g)B ιpc gpc , bδci / c′i

bιpc gpc , δ / 〈∅, ι1, skip | ∅, ι2, skip〉gci =
κi B (ιpc g ιi) (gpc gc g)B ιpc gpc , bδci / {skip}

bιpc gpc , δ / if v then c1 else c2ci =
ιpc gpc , bδci / if bvci then c1 else c2

bιpc gpc , δ / ifX e then c1 else c2ci =

ιpc gpc , bδci / ifX e then c1 else c2

bιpc gpc , δ / whileX e do cci = ιpc gpc , bδci / whileX e do c

Fig. 10. Projections

The interesting case is the projection of a command pair. We
reassemble the pc stack and wrap ci with curly braces to reflect
the fact that these pairs only appear in an if branch.

The Soundness theorem ensures that if a configuration can
transition to another configuration, then its projection can
transition to the projection of the resulting configuration, gen-
erating the same trace modulo projection. The Completeness
theorem ensures that if both projections of a configuration ter-
minate, then the configuration terminates in an equivalent state.
We write, ` κ, δ /i c wf, to indicate that the configuration is



Γ;κ `r c

Γ;κ `r c
Γ;κB ι gpc `r {c}

R-POP
Γ; ι gpc ` c
Γ; ι gpc `r c

R-END

Γ;κB ιpc gpc `r c1 Γ; ιpc gpc ` c2 κ 6= ∅
Γ;κB ιpc gpc `r c1; c2

R-C-SEQ

∀i ∈ 1, 2, Γ;κi B (ιpc g ιi) (gpc gc g) `r ci
ιi ` g ∈ H(`A)

Γ; ιpc gpc `r 〈κ1, ι1, c1 |κ2, ι2, c2〉g
R-C-PAIR

Γ ` e : boolg

ιg = γ(g) ∀i ∈ {1, 2}, Γ; ιpc g ιg gpc gc g ` ci
Γ; ιpc gpc `r if e then c1 else c2

R-C-IF

Fig. 11. Typing rules for commands with pairs

well-formed (defined in Appendix A). Theorems 1 and 2 are
the formal soundness and completeness theorem statements.
The proofs can be found in the full version of the paper [19].

Theorem 1 (Soundness). If κ, δ / c
T
−→∗ κ′, δ′ / c′ where

` κ, δ / c wf, then ∀i ∈ {1, 2}, bκ, δ / cci
bTci
−→∗ bκ′, δ′ / c′ci

Theorem 2 (Completeness). If ∀i ∈ {1, 2}, bκ, δ / cci
Ti

−→∗

κi, δi / skip and ` κ, δ / c wf, then ∃κ′, δ′ s.t. κ, δ / c
T
−→∗

κ′, δ′ / skip, bκ′, δ′ / skipci = κi, δi / skip and Ti = bTci.

C. Preservation

Before we explain the typing rules for the extended con-
figuration, we define another label relation. A gradual label is
said to be “high” w.r.t an attacker, if the lower label in the
interval is not lower than or equal to the level of the attacker.

ι = [`l, `r] `l 64 `A ι v γ(g)

ι ` g ∈ H(`A)

All the pair typing rules are parameterized over attacker’s
label `A, which we omit from the rules for simplicity. The
typing rule for value-pairs is shown below. The second premise
checks that the interval is representative of the gradual type U .
The last premise checks if U ’s security label is high, meaning
this pair of values is non-observable to the adversary.

∀i ∈ {1, 2}, Γ ` ιi ui : τg

ιi v γ(g) ιi ` (g) ∈ H(`A)

Γ ` 〈ι1 u1 | ι2 u2〉 : τg
R-V-PAIR

The judgement for typing commands with pairs is of the
form Γ;κ `r c. Fig. 11 summarizes these typing rules.

Rule R-POP types the inner command with only the top part
of the pc stack. When the pc stack contains only one element,
R-END directly uses command typing. For pairs, R-C-PAIR
first checks that each ci is well-typing, using the pc context

Store typing:

` · : ·
T-S-EMP

` δ : Γ Γ ` v : U

` δ, x 7→ v : Γ, x : U
T-S-IND

Configuration typing:

` δ : Γ Γ;κ `r c
` κ, δ, c

T-CONF

Trace typing:

` v : U ` intvl (v) 4 [`, `]

` (`, v)
T-A-OUT

` v : U ` 64 `A ` intvl (v) 4 [`, `]

` (i, `, v)
T-A-OUTI

` ·
T-T-EMP

` α ` T
` α,T

T-T-IND

Fig. 12. Store, trace and configuration typing

assembled from the local pc context. The second premise
makes sure that these commands are typed (executed) in a
high context. Here ιi is the witness for g, which demonstrates
that ci are high commands. The sequencing statement types the
second command using only the last pc on the stack because
the execution order is from left to right. We can only encounter
branches in the first part of a sequencing statement and not
the second part before beginning the execution of the second
command in the sequence. The typing rule for if statements
without a write set is straightforward.

We define store, trace and configuration typing in Fig. 12.
The store δ types in the typing environment Γ if all variables
in δ are mapped to their respective type and gradual label in Γ.
We define top-level configuration typing as ` κ, δ, c. To type
traces and actions, the output value needs to be well-typed,
and the label-interval of the value has to be lower than or
equal to the channel label.

Using these definitions, we prove that our paired execution
semantics preserve the configuration typing and generate a
well-typed trace (Theorem 3). We write, ` κ, δ /i c sf for
i ∈ {·, 1, 2}, to indicate that the configuration is safe. We say
a configuration is safe if all of the following hold:

1) if i ∈ {1, 2}, then κ ∈ H(`A), ∀x ∈ WtSet(c),
intvl (δ(x)) ∈ H(`A)

2) if c = if 〈 | 〉 then c1 else c2, then ∀x ∈ WtSet(c),
intvl (δ(x)) ∈ H(`A)

3) if c = 〈κ1, ι1, c1 |κ2, ι2, c2〉g , then ∀i ∈ {1, 2}, ιi ` g ∈
H(`A), and ∀x ∈ WtSet(c), intvl (δ(x)) ∈ H(`A)

Theorem 3 (Preservation). If κ, δ / c
T
−→∗ κ′, δ′ / c′ with

` κ, δ, c and ` κ, δ / c sf, then ` κ′, δ′, c′ and ` T



Store equivalence:

g 4 c `A ι v γ(g) ` (ι u)g : U

` (ι u)g ≈`A (ι u)g : U
EQV-L

∀i ∈ {1, 2}, ιi ` g ∈ H(`A) ` (ιi ui)
g : U

` (ι1 u1)g ≈`A (ι2 u2)g : U
EQV-H

` · ≈`A · : ·
EQS-EMP

` δ1 ≈`A δ2 : Γ ` v1 ≈`A v2 : U

` δ1, x 7→ v1 ≈`A δ2, x 7→ v2 : Γ, x : U
EQS-IND

Trace equivalence:

` [] ≈`A []
EQT-E

` T1 ≈`A T2 `1 = `2 4 `A v1 = v2

` (`1, v1) :: T1 ≈`A (`2, v2) :: T2

EQT-L

` T1 ≈`A T2 `1 64 `A
` (`1, v1) :: T1 ≈`A T2

EQT-HL

` T1 ≈`A T2 `2 64 `A
` T1 ≈`A (`2, v2) :: T2

EQT-HR

Fig. 13. Equivalence definitions

D. Noninterference

We show that the gradual type system presented above
satisfies termination-insensitive noninterference. We start by
defining equivalence for values and stores (Fig. 13). Two
values are said to be equivalent to an adversary at level `A if
either they are both visible to the adversary and are the same,
or neither are observable by the adversary. We also define
equivalence of traces w.r.t an adversary at level `A in Fig. 13.
The following noninterference theorem (Theorem 4) states that
given a program and two stores equivalent for an adversary at
level `A, if the program terminates in both the runs, then the
`A-observable actions on both runs are the same.

Theorem 4 (Noninterference). Given an adversary label `A,
a program c, and two stores δ1, δ2, s.t., ` δ1 ≈`A δ2 : Γ,

and Γ; [⊥,⊥] ⊥ ` c, and ∀i ∈ {1, 2}, [⊥,⊥] ⊥, δi / c
Ti

−→∗
κi, δ

′
i, skip, then ` T1 ≈`A T2.

We know that only when ` 64 `A, the individual runs
can produce (i, `, v) because the two runs diverge only when
branching on pairs. Similarly, (`, 〈v1 | v2〉) can only be pro-
duced if ` 64 `A, because pairs can only be typed if each
individual interval in the pair is high and rule P-OUT makes
sure ` is lower than or equal to the pair’s interval. We
prove a simple lemma that establishes that given a well-
typed trace of actions T, ` bTc1 ≈`A bTc2. By combining

Labels and intervals:

` v ? ` v `
`′1 4 `1 `2 4 `

′
2

[`1, `2] v [`′1, `
′
2]

Expressions:

ι1 v ι2 g1 v g2
(ι1 u)g1 v (ι2 u)g2 x v x

e1 v e′1 e2 v e′2
e1 bop e2 v e′1 bop e′2

E v E′ g1 v g2 e1 v e2
Eg1e1 v E′g2e2

Commands:

skip v skip

c1 v c′1 c2 v c′2
c1; c2 v c′1; c′2

e1 v e2
x := e1 v x := e2

e1 v e2
output(`, e1) v output(`, e2)

e1 v e2 c1 v c′1 c2 v c′2
ifX e1 then c1 else c2 v ifX e2 then c′1 else c′2

e1 v e2 c1 v c2
whileX e1 do c1 v whileX e2 do c2

Store, Types and Typing-context:

g v g′

τg v τg
′

∀x ∈ Γ. Γ(x) v Γ′(x)

Γ v Γ′

PC-stack and Configurations:

∅ v ∅
ι v ι′ g v g′

ι g v ι′ g′
κ1 v κ′1 κ2 v κ′2
κ1 B κ2 v κ′1 B κ′2

∀x ∈ δ. δ(x) v δ′(x)

δ v δ′
κ v κ′ δ v δ′ c v c′

κ, δ / c v κ′, δ′ / c′

Fig. 14. Precision relations

the Preservation, Soundness, and Completeness Theorems, it
follows that our gradual type system satisfies termination-
insensitive noninterference.

VI. GRADUAL GUARANTEES

The gradual guarantees state that if a program with more
precise labels type-checks and is accepted by the runtime
semantics of the gradual type system, then the same program
with less precise labels is also accepted by the gradual type
system. To establish these guarantees, we define a precision
relation between labels, expressions, and commands. The
precision relations are shown in Fig. 14.

Our type system with gradual labels satisfies the static
gradual guarantee. The dynamic gradual guarantee is also
ensured by our calculus, i.e., if a command takes a step under



a store and pc stack, then a less precise command can also
take a step under a less precise store and pc stack.

Theorem 5 (Static Guarantee). If Γ1; g1 ` c1, Γ1 v Γ2,
g1 v g2, and c1 v c2, then Γ2; g2 ` c2.

Theorem 6 (Dynamic Guarantee). If κ1, δ1 / c1
α1−→ κ′1, δ

′
1 /

c′1 and κ1, δ1 / c1 v κ2, δ2 / c2, then κ2, δ2 / c2
α2−→ κ′2, δ

′
2 /

c′2 such that κ′1, δ
′
1 / c

′
1 v κ′2, δ′2 / c′2 and α1 = α2.

VII. DISCUSSION

Monitor comparison: Our monitor is a hybrid monitor.
The differences between our monitor and traditional hybrid
monitors (c.f., [13], [17], [21]–[23]) are that (1), we update
the memory before executing the branch, while other hybrid
monitors update the labels at the merge points; (2), our monitor
will not upgrade variables with fixed static labels (the monitor
will abort) and only refine label intervals for dynamically
labeled variables. Fig. 15 highlights the differences between
our monitor and other information flow monitors using the
example program in Listing 4 and a two point lattice (L 4 H).
We show two cases for our monitor, differing in y’s security
label (?, or L). Note that hybrid monitors including ours have
the same behavior regardless of x’s value. When y has a
dynamic label, our monitor is more precise than NSU, as
precise as permissive-upgrade [12], and less precise than a
traditional hybrid monitor [13]. Ours can be as precise as a
traditional hybrid monitor if z’s initial value is ([L,H]true)?.
This would allow us to refine z’s label interval, and only abort
at the output. When y has a static label, or an effectively static
label (i.e., ([L,L]true)L), our monitor is the least precise and
will abort at the first branch. This rigidity is due to our decision
to not update variables’ label-intervals, except by refinement.

Implicit leaks manifested in noninterference proofs: Let’s
revisit the example at the end of Section IV-C to see how
the implicit leak manifests in the paired execution and why
it leads to our current design; where we do not use the write
sets in the if statements and simply refine the label-intervals.
Because x is H , it’s initialized with a paired value.

δ = x 7→ 〈[H,H]trueH | [H,H]falseH〉,
y 7→ [L,H]true?, z 7→ [L,L]trueL

c1 = if x then y := [L,H]false? else skip

c2 = if y then z := [L,L]falseL else skip

[L,L] L, δ / c1; c2 −→
· · · / if 〈[H,H]trueH | [H,H]falseH〉 then

y := [L,H]false? else skip; c2 −→
· · · / 〈· · · , y := [L,H]false?; c2 | · · · , skip; c2〉 −→

The variable y is updated only in the left branch. To prove
soundness and completeness of the paired semantics, the
two executions should be independent. Therefore, we try to
update y in the store as 〈[H,H]false | [L,H]true〉?. However,
this pair is not well-formed because pairs are only well-
typed if both intervals are in H . Clearly, the right branch
of y does not satisfy this requirement. Therefore, we cannot

prove preservation for the assignment case. For preservation
to succeed, we would need to refine the right branch to be
[H,H]true when assigning to y in the left execution. But then
the two executions are no longer independent, which breaks
soundness (i.e., the projected execution is not guaranteed to
make progress or stay in the same state).

With these constraints in place, we need to refine y before
the branch, which ultimately leads to our final design.

VIII. RELATED WORK

Static Information Flow Type Systems: Quite a few type-
systems have been proposed to statically enforce noninterfer-
ence by annotating variables with labels. Volpano et al. [1]
present the first type-system with information flow labels
that satisfies a variant of noninterference, also known as
termination-insensitive noninterference. If all variables are an-
notated with concrete security labels, our type system behaves
the same as a flow-insensitive information flow type system.
Being a gradual type system, we can additionally accept
programs with no security labels and enforce termination-
insensitive noninterference at runtime. Our formalization bor-
rows the proof-technique from FlowML, presented by Pottier
and Simonet [18], for enforcing noninterference using pairs.

Static type systems that resemble gradual typing:
JFlow [24] (and later Jif) includes polymorphic labels, for
which programmers can specify the upper bound of a poly-
morphic label. Polymorphic labels are essentially (bounded)
universally quantified labels and these labels are instantiated
by concrete labels at runtime. There is no label refinement
associated with polymorphic labels. Jif also allows run-time
labels (also called dynamic labels). These are runtime repre-
sentation of label objects that users can generate and perform
tests on. This is not to be confused with the dynamic label
(?) in gradual typing. Runtime labels do not mean unknown
security labels, nor are they refined at runtime. Finally, label
inference is a widely used compile-time algorithm to reduce
programmers’ annotation burdens. A flow-insensitive type
system with the most powerful inference algorithm is less
permission than our system. Ill-typed programs, rejected by
a type system, can be accepted by our type system. Their
safety is ensured by our runtime monitors.

Purely dynamic monitors: Dynamic approaches use a run-
time monitor to track the flow of information through the
program. The labels are mostly flow-sensitive in nature. Austin
and Flanagan [11] present a purely dynamic information flow
monitoring approach that disallows assignments to public
values in secret contexts. Our monitor semantics follows a
similar approach to prevent information leaks at runtime. Sub-
sequent work presents approaches to make the analysis more
permissive and amenable to dynamic languages [12], [25]–
[27]. A recent paper shows the equivalence between coarse-
grained and fined-grained dynamic monitors [28]. Detailed
comparisons between our monitor and dynamic monitors can
be found in Fig. 15.



y = trueL, z = trueL x = falseH x = trueH WHILEG
Evd

Program NSU/Permissive NSU Permissive Hybrid y = [L,H]true? y = [L,L]trueL

if x branch not taken branch taken branch taken y ↑ [H,H] try y ↑ [H,H], abort
then y := falseL pc = H , abort y ↑ P y ↑ H
if y branch taken abort try z ↑ [H,H], abort
then z := falseL z ↑ H
output(L, z) output(L, false) abort

Fig. 15. Comparison of monitor behavior. y ↑ ` denotes monitor’s attempt to update y’s label (interval).

Hybrid monitors: To leverage the benefits of static and
dynamic approaches for precision and permissiveness, re-
searchers have also proposed hybrid approaches to enforce
noninterference [13], [17], [21]–[23], [29]–[31]. We demon-
strate that the hybrid monitoring approach is suitable for
generating runtime behavior of gradual types that rely on
refining label intervals. Gradual typing has the added benefit of
allowing programmers to reject ill-typed programs. As shown
in Fig. 15, our monitor aborts earlier than a typical hybrid
monitor because of the lack of support for label updating. We
support termination-insensitive noninterference, while others
support progress-sensitive noninterference [22], [31].

Gradual information flow type systems: More closely
related to our work are works on gradual security types.
Disney and Flanagan [3] study gradual security types for a
pure lambda calculus, and Fennell and Thiemann [4] present
a gradual type system for a calculus with ML-style refer-
ences. However, these works are based on adding explicit
programmer-provided checks and casts to the code. Fennell
and Thiemann [5] extend their prior work to object-oriented
programs in a flow-sensitive setting for a Java-like language.
They use a hybrid approach to perform effect analysis that
upgrades the labels of variables similar to the write set used
in our analysis. At runtime, these systems cast the dynamic
label to a fixed label, rather than a set of possible labels, and
the monitors updates labels of memory locations, which we
do not do. On the other hand, our approach has fixed gradual
labels and refines only the label-intervals associated with the
value to satisfy dynamic gradual guarantee. More recently,
Toro et al. [6] presented a type-driven gradual type system
for a higher-order language with references based on abstract
gradual typing [9]. Their formalization satisfies the static grad-
ual guarantee, but sacrifices the dynamic gradual guarantee for
noninterference. They briefly discuss the idea of using hybrid
approaches and faceted evaluation for regaining the dynamic
gradual guarantee. The language presented in this paper is
simpler than their language but has mutable global variables
and hence, a similar issue with proving noninterference while
satisfying the dynamic gradual guarantee.

GLIO [7] presents another interpretation of gradual informa-
tion flow types that enjoys both noninterference and gradual
guarantees. GLIO is the most expressive among the above-
mentioned projects; it includes higher-order functions, general
references, coarse-grained information flow control, and first-
class labels. GLIO’s monitor decides the concrete label for
a dynamically labeled reference at allocation time. While

avoiding problems stemmed from refining label intervals, the
concrete label results in a less permissive approach.

Our work explores yet another design space of gradual
information flow types and highlights the necessity of a hybrid
approach for a system that refines label intervals to ensure
both noninterference and the gradual guarantees. Extending
our static type system to include higher-order functions and
references would require a precise static analysis to determine
the write set accurately, as pointed out by prior work [17].
This is common for hybrid approaches. For instance, LJGS [5]
uses a sophisticated points-to analysis. Moore and Chong have
identified sufficient conditions for safely incorporating mem-
ory abstractions and static analyses into a hybrid information-
flow monitor [17]. An interesting future direction is to in-
vestigate such conditions and abstractions for a higher-order
language. Another possible direction for handling languages
with first-class functions and references can be using the ideas
proposed by Nielson et al. [32] and Foster et al. [33], who use
regions and side-effect analysis to determine aliases.

IX. CONCLUSION

We presented a gradual information flow type system
for a simple imperative language that enforces termination-
insensitive noninterference and ensures the gradual guarantee
at the same time. We demonstrated that our hybrid monitor
can stop implicit flows by refining the labels for references
in the write-sets of both branches, regardless of which branch
is taken. The non-conventional proof technique of noninterfer-
ence that we used helps us identify the conditions for ensuring
the gradual guarantees.

ACKNOWLEDGMENT

We would like to thank the anonymous reviewers for
their insightful comments and feedback. This work was
supported in part by the National Science Foundation via
grant CNS1704542 and the CyLab Presidential Fellowship at
Carnegie Mellon University.

REFERENCES

[1] D. Volpano, C. Irvine, and G. Smith, “A sound type system for secure
flow analysis,” Journal of Computer Security, vol. 4, no. 2-3, pp. 167–
187, Jan. 1996.

[2] J. G. Siek and W. Taha, “Gradual typing for functional languages,” in
In Scheme And Functional Programming Workshop, 2006, pp. 81–92.

[3] T. Disney and C. Flanagan, “Gradual information flow typing,” in
Proceedings of the 2nd International Workshop on Scripts to Programs
Evolution, 2011.

[4] L. Fennell and P. Thiemann, “Gradual security typing with references,”
in Proceedings of the 2013 IEEE 26th Computer Security Foundations
Symposium, 2013, pp. 224–239.



[5] ——, “LJGS: gradual security types for object-oriented languages,” in
30th European Conference on Object-Oriented Programming, 2016, pp.
9:1–9:26.

[6] M. Toro, R. Garcia, and E. Tanter, “Type-driven gradual security with
references,” ACM Trans. Program. Lang. Syst., vol. 40, no. 4, pp. 16:1–
16:55, Dec. 2018.

[7] A. A. de Amorim, M. Fredrikson, and L. Jia, “Reconciling noninter-
ference and gradual typing,” in Proceedings of the 35th ACM/IEEE
Symposium on Logic in Computer Science, 2020, pp. 116–129.

[8] J. G. Siek, M. M. Vitousek, M. Cimini, and J. T. Boyland, “Refined
Criteria for Gradual Typing,” in 1st Summit on Advances in Program-
ming Languages, ser. Leibniz International Proceedings in Informatics,
vol. 32, 2015, pp. 274–293.

[9] R. Garcia, A. M. Clark, and E. Tanter, “Abstracting gradual typing,” in
Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, 2016, pp. 429–442.

[10] J. A. Goguen and J. Meseguer, “Security policies and security models,”
in Proc. IEEE Symposium on Security and Privacy, 1982, pp. 11–20.

[11] T. H. Austin and C. Flanagan, “Efficient purely-dynamic information
flow analysis,” in Proc. ACM SIGPLAN Fourth Workshop on Program-
ming Languages and Analysis for Security, 2009, pp. 113–124.

[12] ——, “Permissive dynamic information flow analysis,” in Proc. 5th
ACM SIGPLAN Workshop on Programming Languages and Analysis
for Security, 2010, pp. 3:1–3:12.

[13] A. Russo and A. Sabelfeld, “Dynamic vs. static flow-sensitive security
analysis,” in Proceedings of the 2010 23rd IEEE Computer Security
Foundations Symposium, 2010, pp. 186–199.

[14] S. Hunt and D. Sands, “On flow-sensitive security types,” in Proceed-
ings of the 33rd ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, 2006, pp. 79–90.

[15] D. Volpano and G. Smith, “Eliminating covert flows with minimum
typings,” in Proceedings 10th Computer Security Foundations Workshop,
June 1997, pp. 156–168.

[16] T. Terauchi and A. Aiken, “Secure information flow as a safety problem,”
in Proceedings of the 12th International Conference on Static Analysis,
2005, pp. 352–367.

[17] S. Moore and S. Chong, “Static analysis for efficient hybrid information-
flow control,” in Proceedings of the 2011 IEEE 24th Computer Security
Foundations Symposium, 2011, pp. 146–160.

[18] F. Pottier and V. Simonet, “Information flow inference for ML,” in Pro-
ceedings of the 29th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, 2002, pp. 319–330.

[19] A. Bichhawat, M. McCall, and L. Jia, “First-order gradual information
flow types and gradual guarantees,” https://arxiv.org/abs/2003.12819,
2021.

[20] D. E. Denning and P. J. Denning, “Certification of programs for secure
information flow,” Commun. ACM, vol. 20, no. 7, pp. 504–513, Jul.
1977.

[21] D. Hedin, L. Bello, and A. Sabelfeld, “Value-sensitive hybrid informa-
tion flow control for a JavaScript-like language,” in Proceedings of the
2015 IEEE 28th Computer Security Foundations Symposium, 2015, pp.
351–365.

[22] A. Bedford, S. Chong, J. Desharnais, E. Kozyri, and N. Tawbi, “A
progress-sensitive flow-sensitive inlined information-flow control moni-
tor,” Computers & Security, vol. 71, pp. 114 – 131, 2017.

[23] P. Buiras, D. Vytiniotis, and A. Russo, “HLIO: Mixing static and
dynamic typing for information-flow control in Haskell,” in Proceedings
of the 20th ACM SIGPLAN International Conference on Functional
Programming, 2015, pp. 289–301.

[24] A. C. Myers, “JFlow: Practical mostly-static information flow control,”
in Proceedings of the 26th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, 1999, pp. 228–241.

[25] D. Hedin and A. Sabelfeld, “Information-flow security for a core of
JavaScript,” in Proceedings of the 2012 IEEE 25th Computer Security
Foundations Symposium, 2012, pp. 3–18.

[26] A. Bichhawat, V. Rajani, D. Garg, and C. Hammer, “Generalizing
permissive-upgrade in dynamic information flow analysis,” in Proceed-
ings of the Ninth Workshop on Programming Languages and Analysis
for Security, 2014, pp. 15:15–15:24.

[27] J. F. Santos and T. Rezk, “An information flow monitor-inlining compiler
for securing a core of JavaScript,” in ICT Systems Security and Privacy
Protection, 2014, pp. 278–292.

[28] M. Vassena, A. Russo, D. Garg, V. Rajani, and D. Stefan, “From fine- to
coarse-grained dynamic information flow control and back,” Proc. ACM
Program. Lang., vol. 3, no. POPL, Jan. 2019.

[29] D. Chandra and M. Franz, “Fine-grained information flow analysis
and enforcement in a Java virtual machine,” in 23rd Annual Computer
Security Applications Conference, 2007, pp. 463–475.

[30] S. Just, A. Cleary, B. Shirley, and C. Hammer, “Information flow analysis
for JavaScript,” in Proceedings of the 1st ACM SIGPLAN International
Workshop on Programming Language and Systems Technologies for
Internet Clients, 2011, pp. 9–18.

[31] A. Askarov, S. Chong, and H. Mantel, “Hybrid monitors for concurrent
noninterference,” in 2015 IEEE 28th Computer Security Foundations
Symposium, 2015, pp. 137–151.

[32] F. Nielson, H. R. Nielson, and C. Hankin, Principles of Program
Analysis. Berlin, Heidelberg: Springer-Verlag, 1999.

[33] J. S. Foster, T. Terauchi, and A. Aiken, “Flow-sensitive type qualifiers,”
in Proceedings of the ACM SIGPLAN 2002 Conference on Programming
Language Design and Implementation, 2002, pp. 1–12.

APPENDIX

A. Well-formedness

1) ` v wf, if
a) v = 〈v1 | v2〉, then ∀i ∈ {1, 2}.vi = (ιi ui)
b) v = (ι u)g

2) ` δ wf, if ∀x ∈ δ,` δ(x) wf
3) ` δ /i e wf for i ∈ {·, 1, 2} if ` δ wf
4) ` c wf, when the following hold:

a) if c = 〈κ1, ι1, c1 |κ2, ι2, c2〉g , then ` c1 wf, ` c2 wf,
and c1 and c2 do not contain pairs

b) if c = if e then c1 else c2, then ` c1 wf, ` c2 wf, and
c1 and c2 do not contain pairs or braces

κ, δ / c
α−→ κ′, δ′ / c′

κ, δ / c1 −→ abort

κ, δ / c1; c2 −→ abort
M-SEQ-ERR

δ / e ⇓ v
rfL(δ,X, ιpc g intvl (v)) = undef

ιpc gpc , δ / ifX e then c1 else c2 −→ abort
M-IF-REFINE-ERR

δ / e ⇓ v refineLB(ιpc , v) = undef

ιpc gpc , δ / x := e −→ abort
M-ASSIGN-ERR

δ / e ⇓ v v′ = refineLB(ιpc , v)
updL(intvl (δ(x)), v′) = undef

ιpc gpc , δ / x := e −→ abort
M-ASSIGN-ERR2

δ / e ⇓ v refineLB(ιpc , v) = undef

ιpc gpc , δ / output(`, e) −→ abort
M-OUT-ERR

δ / e ⇓ v refineLB(ιpc , v) = v′

updL([`, `], v′) = undef

ιpc gpc , δ / output(`, e) −→ abort
M-OUT-ERR2

Fig. 16. Monitor abort cases for commands

https://arxiv.org/abs/2003.12819


Read operations:

rd v = v rd1 v = bvc1 rd2 v = bvc2

Write operations:

vn = 〈ι1 u1 | ι2 u2〉g
∀i ∈ 1, 2, restrictLB(ιo, ιi) = ι′i
updL ιo vn = 〈ι′1 u1 | ι′2 u2〉g

restrictLB(ιo, ιn) = ι

updL ιo (ιn un)g = (ι un)g

vn = 〈ι1 u1 | ι2 u2〉g
∃j ∈ [1, 2], restrictLB(ιo, ιj) = undef

updL ιo vn = undef

restrictLB(ιo, ιn) = undef

updL ιo (ιn un)g = undef

c) if c = whileX e do c, then ` c wf and c does not
contain pairs or braces

d) if c = c1; c2 then ` c1 wf, ` c2 wf and c2 does not
contain pairs or braces

e) if c = {c1}, then ` c1 wf

5) ` κ, δ /i c wf for i ∈ {·, 1, 2}) if all of the following
hold

a) ` c wf and ` δ wf
b) if i ∈ {1, 2}, then c does not contain pairs

B. Additional definitions

We define the following constraints on configurations to
facilitate proofs related to paired values and commands. We
start by defining ι ∈ H(`A), Π ∈ H(`A) and κ ∈ H(`A) for
any observer at level `A.

ι = [`l, `r]
`l 64 `A
ι ∈ H(`A)

ι-H

Π = 〈ι1 | ι2〉
ιi ∈ H(`A) , i ∈ {1, 2}

Π ∈ H(`A)
Π-H

κ = ι g B κ′

ι ∈ H(`A) (κ′ ∈ H(`A) ∨ κ′ = ∅)
κ ∈ H(`A)

κ-H

We say a configuration is safe (written ` κ, δ /i c sf for
i ∈ {·, 1, 2}) if all of the following hold

1) if i ∈ {1, 2}, then κ ∈ H(`A), ∀x ∈ WtSet(c),
intvl (δ(x)) ∈ H(`A)

2) if c = if 〈 | 〉 then c1 else c2, then ∀x ∈ WtSet(c),
intvl (δ(x)) ∈ H(`A)

3) if c = 〈κ1, ι1, c1 |κ2, ι2, c2〉g , then ∀i ∈ {1, 2}, ιi ` g ∈
H(`A), and ∀x ∈ WtSet(c), intvl (δ(x)) ∈ H(`A)

We first define when a gradual label of an initial store lo-
cation is not observable by the attacker. Formally: g ∈ H(`A)
iff g = ` and ` 64 `A.

Simple write/output operations:

intvl (vo) = 〈ι1 | ι2〉 or vn = 〈ι′1 u1 | ι′2 u2〉g
∀i ∈ 1, 2, restrictLB(bintvl (vo)ci, bintvl (vn)ci) = ι′′i

upd vo vn = 〈ι′′1 u1 | ι′′2 u2〉g

intvl (vo) = 〈ι1 | ι2〉 or vn = 〈ι′1 u1 | ι′2 u2〉g
∃i ∈ 1, 2, restrictLB(bintvl (vo)ci, bintvl (vn)ci) = undef

upd vo vn = undef

restrictLB(ιo, ιn) = ι

upd (ιo uo)
g (ιn un)g = (ι un)g

restrictLB(ιo, ιn) = undef

upd (ιo uo)
g (ιn un)g = undef

bvnc1 = (ι1 un)g
′

restrictLB(bintvl (vo)c1, ι1) = ι′1
bvoc2 = (ι2 u2)g

upd1 vo (ιn un)g = 〈ι′1 un | ι2 u2〉g

bvnc2 = (ι2 un)g
′

restrictLB(bintvl (vo)c2, ι2) = ι′2
bvoc1 = (ι1 u1)g

upd2 vo (ιn un)g = 〈ι1 u1 | ι′2 un〉g

bvnci = (ιi un)g
′

restrictLB(bintvl (vo)ci, ιi) = undef

updi vo (ιn un)g = undef

Fig. 17. Operations with pairs

κ, δ /i c
α−→ κ′, δ′ /i c

′

κi B ιpc g ιi gpc gc g, δ /i ci −→ abort
{i, j} = {1, 2}

ιpc gpc , δ / 〈κ1, ι1, c1 |κ2, ι2, c2〉g −→ abort
P-C-PAIR-ERR

Fig. 18. Paired executions abort

We define merging of two stores (δ1 ./ δ2) as below:

Γ ` · ./ · = ·
MGS-EMP

Γ ` δ1 ./ δ2 = δ
lab(Γ(x)) ∈ H(`A) vi = (ιi ui)

g(i ∈ {1, 2}
Γ ` δ1, x 7→ v1 ./ δ2, x 7→ v2 = δ, x 7→ 〈ι1 u1 | ι2 u2〉g

MGS-H

Γ ` δ1 ./ δ2 = δ
lab(Γ(x)) 6∈ H(`A) v1 = v2 = v

Γ ` δ1, x 7→ v1 ./ δ2, x 7→ v2 = δ, x 7→ v
MGS-L


	Introduction
	Overview of Information Flow Control
	Gradual Security Typing
	Imprecise Security Label: Interpretations and Operations
	Gradually Refined Security Policy via Examples
	Gradual Guarantees
	Implicit Flows vs. Dynamic Gradual Guarantee

	A Language with Gradual Security Types
	WHILEGEvd
	From WHILEG to WHILEGEvd
	Operational Semantics

	Noninterference
	Paired Execution
	Semantic Soundness and Completeness
	Preservation
	Noninterference

	Gradual Guarantees
	Discussion
	Related Work
	Conclusion
	References
	Appendix
	Well-formedness
	Additional definitions


