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Abstract—For individuals with impaired vision, navi-
gating their surroundings independently can be a daily
struggle. Traditional assistive technologies, which rely on
isolated sensory cues, may not fully capture the complexity
of real-time environments. This paper presents Scene4M,
an extended version of the 4M multimodal model, that
combines the current 4M modalities with new video and
audio data to provide environment descriptions. We de-
veloped custom VQ-VAE tokenizers for both audio and
video, showing moderate reconstruction quality, though
results were not consistently accurate. The full multimodal
training pipeline demonstrated good loss convergence, but
generated scene descriptions were often noisy and lacked
coherence. A transfer evaluation study using frame-wise
captions summarized into video-level descriptions produced
weak outputs, highlighting the limitations of untrained
modalities. Overall, while the system components show
promise, results suggest that stronger tokenizers, more
training time, and deeper integration of new modalities
are necessary for robust performance. Our website is at:
https://www.andrew.cmu.edu/user/Imarinov/scene4m

I. INTRODUCTION

Navigating the physical world presents daily chal-
lenges for individuals with visual impairments, limiting
independent mobility and access to public spaces. Tradi-
tional assistive technologies—such as tactile canes, GPS-
based audio navigation, or wearable sensors—typically
provide isolated and low-resolution sensory feedback.
While useful, these systems often lack the contextual
awareness and adaptability required to interpret complex,
dynamic real-world environments, such as busy streets
or unfamiliar urban settings.

Advances in multimodal learning have introduced
promising new approaches to enhance navigation sys-
tems by fusing audio and video inputs to capture a
richer representation of the surrounding environment.
By integrating visual and auditory cues, such systems
have the potential to recognize contextual elements (e.g.,
approaching vehicles, people, or background sounds),
enabling more accurate and adaptive guidance. However,
constructing such a system introduces multiple technical
challenges including aligning video, audio, and text data
streams, producing discrete token representations, and
extending on top of an existing multimodal system.

Scene4M addresses these challenges by developing a
prototype multimodal system that jointly processes audio
and video data to generate textual scene descriptions. By
building a system that fuses multimodal input into inter-
pretable scene descriptions, this work lays foundational

steps toward future assistive technologies capable of
real-time, context-aware navigation for visually impaired
users. The method emphasizes modularity, scalability,
and the ability to extend to additional modalities or
downstream tasks such as directional instructions. The
focus on aligning rich audiovisual input with natural
language and the other existing 4M [1] image modalities
provides a flexible interface for human-understandable
guidance and opens pathways for further research into
accessible Al-driven navigation systems.

II. RECENT RELATED WORK

Recent developments in multimodal learning have
advanced the capabilities of models to understand com-
plex visual scenes. VideoLLaMA 3, introduced earlier
this year, significantly improves video understanding
by focusing on vision-centric processing of dynamic
environments [2]. Although it offers strong performance
in visual tasks, its architecture remains primarily fo-
cused on visual modality. The authors note: “the core
design philosophy of VideoLLaMA 3 is vision-centric.”
In contrast, Scene4M integrates both video and audio
modalities, enabling richer and more comprehensive
scene understanding that better reflects the multisensory
nature of real-world environments.

Other work has explored the integration of audio,
vision, and language for improving performance across
a range of multimodal tasks. The VALOR model jointly
models vision, audio, and text data to achieve com-
petitive results in tasks such as captioning, retrieval,
and question answering [3]]. However, while VALOR
emphasizes general multimodal capabilities, Scene4dM
targets a more specific objective: understanding envi-
ronmental scenes through the combined use of video,
audio, and textual inputs. This targeted focus provides
a clearer path toward real-world applications such as
navigation assistance, where environmental awareness
across multiple sensory streams is critical.

In the 3D domain, 3DMIT (3D Multi-modal In-
struction Tuning) has recently introduced an effective
framework for enriching large language models with 3D
spatial awareness [4]. Recognizing the scarcity of 3D
scene-language data, the authors constructed a dataset
of 75,000 instruction-response pairs tailored to 3D scene
tasks, including 3D visual question answering, ground-
ing, and dialogue. Their novel prompt tuning paradigm
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bypasses the need for explicit alignment between 3D
scenes and textual descriptions, instead integrating seg-
mented object and scene-level spatial information di-
rectly into the instruction prompt. Although 3DMIT
operates in a different modality space than Scene4M, it
highlights the growing interest in extending LLMs with
richer spatial and perceptual context—an aim shared by
Scene4M through its integration of audio and video for
2D environmental understanding.

III. METHODOLOGY

Our multimodal model has three key components: an
audio tokenizer, a video tokenizer, and a training pipeline
that integrates all modalities. We designed each tokenizer
to convert raw data into a discrete representation com-
patible with a transformer-based architecture.

A. Dataset Selection

Training a multimodal model for navigation assistance
requires a dataset containing both audio and visual infor-
mation from real-world environments. VGG-Sound [5] is
a large-scale, audio-visual dataset with 200,000+ video
clips and 550+ hours of content across 300+ categories.
The dataset offers a diverse distribution of scenes, in-
cluding people, animals, vehicles, and environmental
sounds, making it well-suited for developing models that
support real-life navigation tasks.

We used 14 categories, chosen to reflect common
entities encountered in street-level navigation—such as
vehicles, humans, and pets. 13,000 clips were extracted,
evenly split between audio and video, with each clip
having an audio and video portion to preserve the
multimodal nature of the data. To maintain a manage-
able scope and optimize training efficiency, we used a
limited subset in size and category diversity, though a
broader selection could be incorporated with additional
computational resources.

The breakdown of our dataset is detailed in

B. Audio Tokenizer

The audio tokenizer is responsible for converting raw
waveform inputs into a sequence of discrete tokens suit-
able for multimodal processing. The pipeline begins with
raw audio clips from the VGG-Sound dataset, which are
first resampled to a lower sampling rate. Resampling
serves a dual purpose: it reduces computational overhead
and retains the most perceptually relevant frequency
range for human listeners.

Following resampling, we transform the audio wave-
form into a time-frequency representation using a mel
spectrogram. The mel scale is specifically chosen for
its ability to mimic the nonlinear frequency sensitivity
of the human auditory system, placing greater emphasis
on lower frequencies where most informative content

resides. The resulting mel spectrogram captures the
power distribution of the signal across both time and
frequency dimensions.

To discretize this continuous representation, we em-
ploy a Vector Quantized Variational Autoencoder (VQ-
VAE) [6]. The encoder network within the VQ-VAE
processes the mel spectrogram and maps it to a lower-
dimensional latent space, where it is quantized into a
fixed vocabulary of discrete tokens. These tokens serve
as a compact, information-rich representation of the
audio signal, enabling alignment with other modalities
and facilitating efficient multimodal training.

The configuration and training of the audio tokenizer
are detailed in

C. Video Tokenizer

The video tokenizer processes raw video clips from
the VGG-Sound dataset and converts them into se-
quences of discrete tokens. We first preprocess each
video clip by removing black padding bars to eliminate
irrelevant visual information. The frame rate and resolu-
tion are then reduced to predefined values (1.6 fps and
32 x 32 resolution) to improve computational efficiency
while preserving essential spatio-temporal features. The
preprocessed video is then passed into a VQ-VAE, which
transforms the continuous video data into a discrete
tokenized form.

The VQ-VAE consists of an encoder-decoder archi-
tecture, where the encoder comprises three layers of
3D convolution with batch normalization and ReLU
activations in the first two layers. The encoder maps
the video into a grid of latent vectors in the codebook
space. Each vector in this grid is replaced by the nearest
entry from a fixed-size codebook using nearest-neighbor
search, and the resulting indices are used as the discrete
video tokens. The decoder mirrors the encoder archi-
tecture but uses a tanh activation in the final layer to
produce outputs within [—1, 1], matching the normalized
input video format.

The codebook is initialized using a k-means clustering
procedure: multiple input videos are passed through the
encoder, and the resulting latent vectors are clustered
using k-means (with & = codebook_size = 256). The
cluster centroids are used as the initial codebook vectors.
During training, these codebook vectors are updated
using an exponential moving average (EMA) rather than
direct gradient descent. This EMA mechanism stabilizes
training by moving each codebook vector toward the
centroid of all encoder vectors currently mapped to it,
based on moving averages of the cluster centers and
cluster sizes.

The configuration and training of the video tokenizer
are detailed in
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Fig. 1. Full training pipeline; each modality is passed to a specialized
tokenizer, then all three modalities are fed together to the 4M model

D. Full Training Pipeline

The complete training pipeline integrates audio, video,
and textual modalities to enable multimodal scene un-
derstanding. Each data point begins with a label from
one of the 14 selected VGG-Sound categories. As these
labels are only one or two words long, we created a
curated dictionary that contains three to four extended
natural language captions for each category. For every
data point, a caption is randomly sampled from the
corresponding set to introduce textual variability and
provide a richer supervision signal. The captions are then
passed into the WordPiece Tokenizer used by 4M.

The raw audiovisual clip from VGG-Sound is then
split into separate video and audio components. The
video is tokenized using Nvidia’s COSMOS discrete
video tokenizer (DV4x8x8), which generates compact
spatio-temporal token sequences. We extended the initial
timeline for the self-developed video tokenizer, so the
pre-trained COSMOS model was used to ensure stability
and efficiency in the final training. The audio compo-
nent is processed through the custom audio tokenizer,
which transforms the waveform into discrete tokens as
described earlier.

Once tokenized, all three modalities—video tokens,
audio tokens, and the sampled text caption—are fed into
the 4M model (specifically, the 4M-7_B_CC12M).

The 4M model was initialized by loading the EPFL-
VILAB/4AM-7_B_CC12M pre-trained checkpoint. Ini-
tially, all parameters of this pre-trained 4M model were
frozen to ensure they remained unchanged during the
early stages of fine-tuning. The AdamW optimizer was
chosen for training, with an initial learning rate set at
1 x 107%. The cross entropy loss function used was
the same modality-specific loss computation performed
within the 4M model. The overarching training objective
was to minimize this calculated loss, which was then
backpropagated to facilitate the updating of the model’s
trainable parameters.

The full configuration of the training pipeline is de-
tailed in
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Fig. 2. Audio tokenizer results; top image is the original waveform of
the audio clip; middle image is the original mel spectrogram; bottom
is the reconstructed mel spectrogram

IV. EXPERIMENTS

The experimental evaluation covers the three core
system components (audio tokenizer, video tokenizer,
full training pipeline), along with a transfer evaluation
study assessing the extensibility of the 4M model.

For the audio tokenizer, qualitative results demonstrate
the successful conversion of raw waveforms into discrete
token representations. The tokenizer had a final loss of
0.2041. Figure [2] shows an example mel spectrogram
input and its corresponding reconstruction.

Video tokenizer example
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Fig. 3. Video tokenizer results: the top row contains the first five
frames of an input video after preprocessing; the bottom row contains
the same five frames reconstructed

The video tokenizer also shows promising results with
a perceptible retention of spatial and temporal structure.
Figure [3] includes original and reconstructed frames for
an example video, illustrating the encoder’s ability to
preserve semantic content despite compression.

For the full multimodal pipeline, evaluation was per-
formed using a subset of test examples where audio,
video, and sampled caption prompts were input to the
4M model. Figure @] shows a representative output,
including tokenized video/audio inputs and the corre-
sponding generated scene description. The final average
Loss was 0.3705. Figure [6] in the Appendix shows the
WandB charts of the final training.



Output from finetuned ScenedM model (video + audio — text)

[ flipped amid winnie
chattanooga parach
restorationlingtonalous
affilhedagh diapers |

Fig. 4. Results of the full training; input modalities are video + audio,
output modality generated is a (nonideal) text description of the scene
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Fig. 5. Transfer evaluation; the text is generated by the original EPFL-
VILAB/4M-7_B_CC12M model without any additional finetuning

To evaluate the model’s flexibility, a transfer evalu-
ation was conducted to explore whether video under-
standing could emerge in 4M when it was not explicitly
trained for it. 16 video frames were passed as indi-
vidual image inputs to the base 4M model, generating
frame-wise captions that were then aggregated into a
single video-level scene summary using the Google T5
summarization model. Figure [ presents an example
of a full-scene description generated via this approach.
The resulting summary was often disjointed, repetitive,
or lacking coherence, highlighting the difficulty of the
model in integrating temporal context between frames.
This suggests that explicitly training 4M on a dedicated
video modality could significantly improve its capacity
to understand dynamic scenes and better support com-
plex, real-world tasks such as navigation assistance.

V. CONCLUSION AND LIMITATIONS

This project demonstrates the first steps in building a
multimodal system for scene understanding by integrat-
ing audio, video, and textual modalities using discrete
tokenizers and a unified training pipeline. While the
results show promising alignment between modalities,
several limitations remain. Training on video data is
computationally intensive and time-consuming, which
constrained the scale and depth of experimentation.
Additionally, although VGG-Sound provides a large
and diverse dataset, the selected subset may not fully
capture the variability and complexity of real-world
environments, limiting the generalizability of the model.
Furthermore, the generated captions used during training

are limited in both diversity and richness; captions within
the same category often lack variation and are short in
length, reducing the model’s exposure to nuanced lan-
guage. These factors highlight the need for more scalable
training infrastructure, richer and more diverse datasets,
and enhanced textual supervision to further improve the
system’s robustness and real-world applicability.

Several extensions could improve the performance
and generalizability of the current system. Increasing
the amount of training time and expanding the volume
of training data used could lead to more stable and
robust model, capable of generating better captions.
Additionally, experimenting with alternative audio and
video tokenizers would provide insight into how different
discretization strategies affect downstream performance,
potentially revealing more efficient or semantically rich
tokenization methods.

VI. INDIVIDUAL CONTRIBUTIONS

Two team members carried out the majority of the
work in this project. L. Marinov was responsible for
the training pipeline code, authored all three project
reports, created the final presentation slides, helped with
the audio tokenizer, and helped with the dataset prepro-
cessing. C. Egeland implemented the video tokenizer,
preprocessed the dataset, conducted the transfer evalua-
tion, generated the outputs of the finetuned model, and
assisted with the full training setup.

A. Duval contributed to the implementation of the
audio tokenizer, but the configuration was not updated to
work within the training pipeline. Other tasks assigned to
him were either not completed or had to be substantially
rewritten due to critical issues in the code. K. Driss did
not contribute to the implementation or documentation
of the project but helped prepare the presentation slides.
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VII. APPENDIX
A. Dataset Breakdown

14 of the available 300+ categories were chosen
from VGG-Sound. The breakdown of number of clips
obtained from each category and their percentage weight
in the full training dataset are detailed in Table

Category Count  Percentage
driving buses 794 10.39%
engine accelerating, revving, vroom 788 10.31%
driving motorcycle 772 10.10%
people crowd 757 9.90%
police car, siren 753 9.85%
female speech, woman speaking 699 9.15%
male speech, man speaking 698 9.13%
skateboarding 606 7.93%
dog barking 510 6.67%
car passing by 455 5.95%
hammering nails 401 5.25%
wind chime 270 3.53%
people eating 140 1.83%
Total 7643 100%

TABLE I
BREAKDOWN OF DATASET CATEGORIES

B. Audio Tokenizer Configuration and Training

The audio tokenizer is configured with a latent di-
mension of 64 and uses 512 embeddings. Its architecture
comprises an Encoder with 1 input channel, 128 hidden
channels, and 64 output z_channels, and a Decoder with
64 input z_channels, 128 hidden channels, and 1 output
channel. The VQ-VAE component has an embedding
dimension of 64. Training uses a batch size of 32, and
the model is optimized with AdamW, applying a learning
rate of 1 x 1072 for the encoder/decoder and 1 x 10~*
for the VQ embeddings.

We train for 20 epochs, and the total loss is a combina-
tion of reconstruction loss (Mean Squared Error between
reconstructed and original audio) and VQ loss, which
itself includes a commitment loss and an embedding loss.
A linear warmup schedule is applied to the commitment
cost () over the first 5 epochs, increasing from 0.01
to 0.25. Audio preprocessing involves resampling wave-
forms to 16000 Hz and generating mel spectrograms
with an n_fft of 1024, a hop_length of 256, and 80
mel bins. These mel spectrograms are then normalized
by their median and standard deviation, and loglp is
applied. A custom padding function ensures consistent
audio sequence lengths within batches.

C. Video Tokenizer Configuration and Training

Since nearest-neighbor selection is non-differentiable,
we employ a straight-through estimator to enable back-
propagation. During the forward pass, the quantized

Fig. 6. WandB charts of full training; from top left to bottom right as
follows: video loss, audio loss, epoch loss, epoch, batch loss

codebook vectors are passed to the decoder, while during
the backward pass, gradients from the decoder are redi-
rected through the unquantized encoder outputs to update
encoder weights. This combination of techniques allows
the video tokenizer to produce stable, discrete token
sequences that preserve the essential spatio-temporal
structure of the original video data.

D. Training Pipeline Configuration

During training, we used a batch size of 32, and
the model was trained for a total of 40 epochs. We
consistently apply a token_budget of 128 for both the
encoder and decoder during the fm model’s forward
pass. New BaseModalityEncoderEmbeddings
and BaseModalityDecoderEmbeddings were in-
stantiated specifically for the audio, video, and caption
modalities. These newly introduced embedding layers
were initialized using the init_std value of 0.02, inherited
from the original 4M model, and were subsequently
configured to be trainable. Finally, the 4M modality
information dictionary, along with the 4M encoder and
decoder modality sets, were updated to accurately reflect
the incorporation of these new audio, video, and caption
modalities into the model’s architecture.

E. Full Training WandB Results

The training progress visualized in the charts in Fig-
ure [6] demonstrates somewhat encouraging trends, par-
ticularly in overall model convergence. The epoch loss
(top right of Figure [6] and enlarged in Figure [7) shows
a clear and consistent downward trajectory, steadily de-
creasing from over 3.0 to below 0.5 across approximately
8,000 steps. This loss reduction indicates that the model
is learning effectively over time and that the training
process is stable.

The video loss (top left of Figure [6) follows a simi-
larly positive pattern, with initial volatility becoming a
more sustained reduction, eventually reaching near-zero
levels. This mild improvement suggests that the video
component of the model is somewhat successfully recon-
structing and encoding visual data as training progresses.
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Fig. 7. Enlarged epoch loss chart from full training

The audio loss (top middle of Figure [6), does not
trend downward overall. The observed fluctuations likely
reflect the increased difficulty of audio tokenization or
possible noise in the data, but the loss generally remains
within a manageable range and decreases over time.

The batch loss (bottom right of Figure [6) aligns with
the epoch loss trend, showing a rapid early decline and
gradually tapering off as the model improves.

Overall, these results indicate some effective training
behavior, particularly in terms of video reconstruction
and overall convergence.
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